Creating A PALEONICHES: Difference between revisions

Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 68: Line 68:


Hendricks, Jonathan R., Alycia L. Stigall, and Bruce S. Lieberman. “The Digital Atlas of Ancient Life: Delivering Information on Paleontology and Biogeography via the Web.” Palaeontologia Electronica 18.2.3E (2015): 1–9.<br>
Hendricks, Jonathan R., Alycia L. Stigall, and Bruce S. Lieberman. “The Digital Atlas of Ancient Life: Delivering Information on Paleontology and Biogeography via the Web.” Palaeontologia Electronica 18.2.3E (2015): 1–9.<br>
Lam, A. R., Stigall, A. L., & Matzke, N. J. (2018). Dispersal in the Ordovician: Speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography, Palaeoclimatology, Palaeoecology, 489, 147-165.doi:10.1016/j.palaeo.2017.10.006<br>


Lieberman, B. S., and E. E. Saupe. Palaeoniches get stiches: analyses of niches informing macroevolutionary theory. Lethaia 49: (2016) 145-149.<br>
Lieberman, B. S., and E. E. Saupe. Palaeoniches get stiches: analyses of niches informing macroevolutionary theory. Lethaia 49: (2016) 145-149.<br>
Line 93: Line 95:


== PENs ==
== PENs ==
=== Digitization PEN: Paleoniches on the western Cincinnati arch, the Ordovician of Indiana ===
=== Digitization PEN: Paleoniches on the Western Cincinnati Arch, the Ordovician of Indiana ===
This project will make one of the key Ordovician fossil collections in the nation digitally accessible for research and public use. The Ordovician Period was the second greatest period in the history of animal life, about 485 to 444 million years ago. The diversity of life increased remarkably during the Ordovician Period until the mass extinction event at the end of the Period. The Indiana University Paleontology Collection has systematically documented fossil records of 10 million years leading up to the extinction, including a series of fossils that were collected in the early 1900s when a new railway grade was cut through Indiana's Ordovician rocks along Tanner's Creek near Cincinnati. The fossils in the Ordovician collection document the migration of ancient marine organisms in response to changing sea level, demonstrate evolutionary adaptation to changing environments, and reveal ecological interactions that help explain why some groups survived the extinction and others did not. Digitizing the collections makes this material accessible for large-scale quantitative scientific studies. Importantly, digitization also makes these incredible fossils available to students, teachers, and fossil enthusiasts in Indiana, across the nation, and around the world. This project will involve K-12 teachers in developing school curriculum exercises based on the fossils and on the digitization process. It will also engage the region's avocational paleontological community in the digitization initiative, giving them unprecedented access to the same fossil research collections used by scientists.  
This project will make one of the key Ordovician fossil collections in the nation digitally accessible for research and public use. The Ordovician Period was the second greatest period in the history of animal life, about 485 to 444 million years ago. The diversity of life increased remarkably during the Ordovician Period until the mass extinction event at the end of the Period. The Indiana University Paleontology Collection has systematically documented fossil records of 10 million years leading up to the extinction, including a series of fossils that were collected in the early 1900s when a new railway grade was cut through Indiana's Ordovician rocks along Tanner's Creek near Cincinnati. The fossils in the Ordovician collection document the migration of ancient marine organisms in response to changing sea level, demonstrate evolutionary adaptation to changing environments, and reveal ecological interactions that help explain why some groups survived the extinction and others did not. Digitizing the collections makes this material accessible for large-scale quantitative scientific studies. Importantly, digitization also makes these incredible fossils available to students, teachers, and fossil enthusiasts in Indiana, across the nation, and around the world. This project will involve K-12 teachers in developing school curriculum exercises based on the fossils and on the digitization process. It will also engage the region's avocational paleontological community in the digitization initiative, giving them unprecedented access to the same fossil research collections used by scientists.  


Line 102: Line 104:
''Principal Investigators (PIs):'' [mailto:garymotz@indiana.edu Gary Motz]  (PI), P. David Polly (Co-PI), Claudia Johnson (Co-PI)
''Principal Investigators (PIs):'' [mailto:garymotz@indiana.edu Gary Motz]  (PI), P. David Polly (Co-PI), Claudia Johnson (Co-PI)


=== Digitization PEN:Targeted Digitization to Expand and Enhance the PALEONICHES TCN ===
=== Digitization PEN: Targeted Digitization to Expand and Enhance the PALEONICHES TCN ===


The invertebrate and plant fossil collections of the University of Texas at Austin document geological research spanning the last 150 years. These four million fossils range in age from Precambrian to the Holocene, encompassing critical intervals of geologic time and geographic areas and certain well-studied organisms. Such huge collections are of little value unless the objects along with related documentation, images, and analytical data are digitized and made globally accessible. This project will connect digital data from these UT collections to institutions that are part of the Paleoniches TCN and ultimately to the national data resource (iDigBio.org). The geologic "deep" time slots that have been selected are the Cambro-Ordovician, Pennsylvanian and Paleogene-Neogene. The major groups of organisms will be brachiopods, echinoderms, and molluscs. The digital record will link the specimen's scientific name to its collection site and geological time period. The collection site will be recorded in current and deep time geography, thus allowing the researcher to examine organisms from the perspective of distinct "plate" configurations. High quality multi-focus imagery with digitally embedded scales will provide researchers with a functional image that can be analyzed in open source software. The final data resource will provide a more robust database for future analytical studies on a broad range of topics within the history of life.
The invertebrate and plant fossil collections of the University of Texas at Austin document geological research spanning the last 150 years. These four million fossils range in age from Precambrian to the Holocene, encompassing critical intervals of geologic time and geographic areas and certain well-studied organisms. Such huge collections are of little value unless the objects along with related documentation, images, and analytical data are digitized and made globally accessible. This project will connect digital data from these UT collections to institutions that are part of the Paleoniches TCN and ultimately to the national data resource (iDigBio.org). The geologic "deep" time slots that have been selected are the Cambro-Ordovician, Pennsylvanian and Paleogene-Neogene. The major groups of organisms will be brachiopods, echinoderms, and molluscs. The digital record will link the specimen's scientific name to its collection site and geological time period. The collection site will be recorded in current and deep time geography, thus allowing the researcher to examine organisms from the perspective of distinct "plate" configurations. High quality multi-focus imagery with digitally embedded scales will provide researchers with a functional image that can be analyzed in open source software. The final data resource will provide a more robust database for future analytical studies on a broad range of topics within the history of life.
367

edits

Navigation menu