InvertNet Digitizer Design and Components

David Raila University of Illinois

Goals

1. Inexpensive

- \$0.10/specimen, 55 million specimens, 22 institutions

2. High Quality

- Gigapixel, error-free
- 3. Labels
 - Capture & process occluded & hand-written

4. Advanced

- Support research, 3D, Data Mining Tools

5. Automated

- Fast, easy repeatable.
- Place tray and push button

Integrated Components

- Robotic 6 DOF Camera Motion
 - 4PRR Parallel Robot
- Telecentric Optical System
- Machine Control System
 - Real-time, programmable, repeatable, automation
- High-Performance vision and image processing
 - Real-time image and object analysis
 - Image Processing,
- Real-Time custom operating system
- Invertnet SW drivers capture, stitch, process, etc.

4PRR Industrial Robot

- Fast, agile, accurate
 - 6 DOF, .01in accuracy
 - anywhere in 50ms
- Easy, 24in square desktop
 - 1 wrench/12 bolts/20 min
 - 50 lbs in small box
 - Low maintenance
- Inexpensive

Optics

- 3MPixel Sensor
 - USB2, Minimal Processing
 - Integrated with vision libraries
- Telecentric Lens System
 - Orthographic projection to Sensor
 - No Focal Length
 - Accurate Measurements
- Approx 150 shots/tray
 - 650 mega-pixel stitched composite

Machine Control

- Real-time machine controller
 - Position, acceleration
 - Precision Motor Control
 - Kinematics for Invertnet Robot
- Programmable & Extensible
 - G-Code, Python, C++
 - Integrated with vision & imaging
- Supported & Open-source

Vision and Image Processing

- Real-time, through-lens, image analysis
 - Object & Feature Tracking
 - Labels, corners, edges, specimens
 - Image Processing Multicore and GPU
 - Undistortion, stitching, quality analysis, 3D
- Customized and Integrated with Machine Control
 - Tray Automation detect corners, edges, depth
 - Feedback & adapt to image quality
 - Monitor Quality & adapt during capture
- Open Source & Programmable Integrated Scripting

Vision and Image Processing

- Real-time, through-lens, image analysis
 - Object & Feature Tracking
 - Labels, corners, edges, specimens
 - Image Processing Multicore and GPU
 - Undistortion, stitching, quality analysis, 3D
- Customized and Integrated with Machine Control
 - Tray Automation detect corners, edges, depth
 - Feedback & adapt to image quality
 - Monitor Quality & adapt during capture
- Open Source & Programmable Integrated Scripting

Custom OS

- Real-time Ubuntu 13.04 on Linux 3.9.6
 - Xenomai real-time kernel for machine control
 - 64bit modern processor support
 - Multi-core, performance optimized
- Integrated machine control and vision system
 - Runs real-time machine and vision simultaneously
- Open Source and Supported

Status

- Robot
 - Major hardware design is stable
 - Frame, motion, arms, connectors, lights
 - 6-axis control plate in last tests
- Software
 - Infrastructure final and stable
 - OS, machine control, vision
 - Capture and Stitching
 - High lab-quality lacks error resilience
 - Adding operator simplified workflow interfaces

