

Assessment & Evaluation

Shari Ellis Center for Science Learning Florida Museum of Natural History

Assessment vs Evaluation

- Assessment to determine what <u>individuals</u> have gained from an experience
- Evaluation to judge the effectiveness of an program
- Research to contribute to a body of knowledge

Types of Evaluation & Assessment

Front-end

Needs assessment

Baseline data

Audience analysis

Formative

Implementation

Process

• Summative (or outcome)

Why Include a Chapter on A & E?

- To encourage the development of quality activities/curricula/professional development
- To increase impact
- To increase likelihood of use of above resources
- To increase likelihood of successful grant writing
- To be ethical

Assessment vs Evaluation

Assessment	Evaluation
Learning Objectives (what to measure) Link to Next Generation Science Standards Common Core or state standards "Strands" of science learning Other	Metrics (Outputs, Outcomes, Impacts) May include those to the left, but more broadly defined
Tools (how to measure) Objective tests Fill-in-the blank worksheets Drawings, models, and maps Concept maps Essays Oral presentations Projects Observation	Tools (how to measure) Standardized instruments (e.g., scales) Interviews Focus groups Questionnaires Website analytics Observation Project records

	10	-
-4	ν	
$\Delta \nabla$		

NSF FRAMEWORK CATEGORY	LSIE STRANDS		
Knowledge, awareness, understanding: Measurable demonstration of assessment of, change in, or exercise of awareness, knowledge, understanding of a particular scientific topic, concept, phenomena, theory, or career central to the project.	Understanding (Strand 2): Come to generate, understand, remember, and use concepts, explanations, arguments, models, and facts related to science.		
Engagement, interest, or motivation in science: Measurable demonstration of assessment of, change in, or exercise of engagement/interest in a particular scientific topic, concept, phenomena, theory, or career central to the project.	Interest (Strand 1): Experience excitement, interest, and motivation to learn about phenomena in the natural and physical world.		
Skills related to science inquiry: Measurable demonstration of the development and/or reinforcement of skills, either entirely new ones or the reinforcement, even practice, of developing skills.	Science Exploration (Strand 3): Manipulate, test, explore, predict, question, and make sense of the natural and physical world.		
Attitudes toward science: Measurable demonstration of assessment of, change in, or exercise of attitude toward a particular scientific topic, concept, phenomena, theory, or career central to the project or one's capabilities relative to these areas. Attitudes refer to changes in relatively stable, more intractable constructs such as empathy for animals and their habitats, appreciation for the role of scientists in society, or attitudes toward stem cell research, for example.	Identity (related to Strand 6): Think about themselves as science learners, and develop an identity as someone who knows about, uses, and sometimes contributes to science. Also related to Strand (4), Reflection: Reflect on science as a way of knowing; on processes, concepts, and institutions of science; and on their own process of learning about phenomena.		
Behavior: Measurable demonstration of assessment of,	Skills (related to Strand 5): Participate in scientific activities		

change in, or exercise of behavior related to a STEM topic.

Behavioral impacts are particularly relevant to projects that are environmental in nature because action is a desired outcome.

Skills (related to Strand 5): Participate in scientific activities and learning practices with others, using scientific language and tools.

What Are We Assessing/Evaluating?

- Activities accomplished in a single session
- Multi-day classroom activities
- Curriculum units
- Specimen galleries
- Data portals
- Professional development (single/multiple sessions)

Digital Atlas of Ancient Life

Digital Atlases Online Now

Project Updates

Cretaceous Atlas of Ancient Life now online:

Notes from Nature

A & E Varies by Activity/Resource

Resource	Form Ass	Summ Ass	Front End	Form Eval	Sum Eval	Res Design
Single Day		X				
Multi-Day	X	X				
Curr	X	X		X	X	
Spec Gall						
Data Port						
Prof Dev	Χ	X	X	X	X	X

Main Points

- Clearly define goals and objectives
- Select a measure appropriate to developmental level and context
- Ensure the measure aligns with the objectives
- Use reliable and valid measures
- Research may require additional rigor

Resources

- NSF 2010 User-Friendly Guide for Project Evaluation http://nsf-i3.org/resources/view/the_2010_userfriendly_handbook_for_project_evaluation
- NSF User-Friendly Handbook for Mixed Method Evaluations
 - http://www.nsf.gov/pubs/1997/nsf97153/
- Online Evaluation Resource Library (OERL) for NSF's Directorate for Education and Human Resources
 - http://oerl.sri.com/home.html
- NSF Common Guidelines for Education Research and Development
 - https://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf13126

Resources

 Online Evaluation Resource Library (OERL) for NSF's Directorate for Education and Human Resources

http://oerl.sri.com/home.html

 Field-tested Learning Assessment Guide (FLAG) for STEM Instructors

http://www.flaguide.org/

Assessment Tools in Informal Science (ATIS)

Pearweb.org/atis

Get involved!

idigbio.org/wiki

facebook.com/iDigBio

twitter.com/iDigBio

vimeo.com/iDigBio

idigbio.org/rss-feed.xml

idigbio.org/events-calendar/export.ics

Identify Clear Goals

NGSS Lesson Planning Template

Grade/ Grade Band: 7th	Topic: Biological Evolution: Unity and Diversity	Lesson # in a series of lessons		
Brief Lesson Description:				
Performance Expectation(s):				
MS-LS4-1 - Analyze and interpret data for patt	erns in the fossil record that document the exist	ence, diversity, extinction, and change of life		
	nder the assumption that natural laws operate			
	explanation for the anatomical similarities and	## 1940 PM 2000		
		differences affioring finoderit organisms and		
between modern and fossil organisms to infer evolutionary relationships.				
Specific Learning Outcomes:				
Students will use mathematical and computational thinking to construct a model of an ancient dragonfly based upon the insect fossil record				
in the iDigPaleo database.				
in the ibigi alco database.				

From iDigPaleo Dragonfly Model lesson (draft)