Using nano-CT scanning to study novel ultrasound-producing structures across Lepidoptera

DAVID PLOTKIN
JESSE R. BARBER
AKITO KAWAHARA

11/7/2017
Nano-computed Tomography (nano-CT)

- Higher-resolution version of micro-CT
Nano-computed Tomography (nano-CT)

• Higher-resolution version of micro-CT
• Higher-resolution version of regular CT
Nano-computed Tomography (nano-CT)

• Higher-resolution version of micro-CT
• Higher-resolution version of regular CT
• Non-invasive scanning of museum specimens, to create 3D model with pixel dimensions < 1 μm
Nano-computed Tomography (nano-CT)

- X-rays transmitted through a specimen
- Detector records x-rays that are not absorbed
- Software converts data to pixels
- More software creates a 2D cross section
- Rotate and repeat
• Assemble the 2D slices and convert into a 3D reconstruction

• Can selectively exclude certain body parts in order to view internal/obscured structures

Tiger moth – Melese

Iso-surface rendering
Tiger moth – Melese

Iso-surface rendering
METHODOLOGY

Virtual dissections through micro-CT scanning: a method for non-destructive genitalia ‘dissections’ of valuable Lepidoptera material

THOMAS J. SIMONSEN and IAN J. KITCHING

Department of Life Sciences, Natural History Museum, London, U.K.

Abstract. Since its first application to the field more than 10 years ago, micro-computed tomography (micro-CT) has been a state-of-the-art technology in the study of insect morphology and anatomy. Despite showing great potential for various types of non-destructive ‘dissections’, the method has, however, seen very limited use in...
METHODS

Virtual dissections through micro-CT scanning: a method for non-destructive genitalia ‘dissections’ of valuable Lepidoptera material

Peach fruit moth - Carposina sasakii
Identifying new sound-producing structures

- Field observations
- Electron microscopy
- Can nano-CT scanning also help locate these structures?
“The bat–moth arms race has existed for over 60 million years...” (Kawahara & Barber, 2015)
“The bat-moth arms race has existed for over 60 million years...”
(Kawahara & Barber, 2015)
“The bat-moth arms race has existed for over 60 million years...”
(Kawahara & Barber, 2015)
Evolution of defensive ultrasound production in moths
Evolution of defensive ultrasound production in moths

- Sphingidae – abdominal scales
Evolution of defensive ultrasound production in moths

- Sphingidae – abdominal scales

- Erebidae: Arctiinae – thoracic tymbals
Identifying new sound-producing structures

Pyralidae/Crambidae—dorsal thoracic scales

Barber et al. (in prep.)

Axel Hausmann, SNSB (2010)
Identifying new sound-producing structures

Pyralidae/Crambidae–dorsal thoracic scales

Barber et al. (in prep.)
Identifying new sound-producing structures

Erebidae: Calpinae – ventral abdominal scales
Identifying new sound-producing structures

- Field observations
- Electron microscopy

- Can nano-CT scanning also help locate these structures?
Identifying new sound-producing structures

- Field observations
- Electron microscopy

- Can nano-CT scanning also help locate these structures?
 MAYBE!!!
Marthula (Noctuoidea: Notodontidae)

Abdomen moves during ultrasound production, but no correlated structures observed with regular microscopy or SEM.
Notodontidae – Marthula

Iso-surface rendering
Notodontidae – Marthula

Volumetric rendering
Search for less dense cuticle – possible evidence of ultrasound production
Search for less dense cuticle – possible evidence of ultrasound production
Nano-CT offers new avenues for exploring insect biodiversity and morphological variation

Useful tool for developing new hypotheses
Acknowledgments

The Kawahara Lab
Jesse Breinholt
Geena Hill
Nicholas Homziak
Lary Reeves
https://www.floridamuseum.ufl.edu/mcguire/kawahara/

The Barber Lab
Brian Leavell
Krystie Miner

FLMNH
David Blackburn
Andrei Sourakov

UF Nanoscale Research Facility
Gary Scheiffele
Edward Stanley

Florida Department of Agriculture – Division of Plant Industry

This research was funded by NSF grants CSBR-1349345, IOS-1121739, and IOS -1121807

Creative Commons license: https://creativecommons.org/licenses/by/2.0/