CT-scanning of Vertebrate Fluid Specimens

Dave Blackburn Associate Curator of Herpetology Florida Museum of Natural History

March 15, 2016

Nanoscale Research Facility at Univ. Florida GE v|tome|x m 180 kV/240 kV dual-tube with 16-inch detector plate

Broader Impacts of CT-scanning

Distribute images and 3D volumes

ISM-ZOO-693928, Puma

Creative 3D printing

Institut Català de Paleontologia Miquel Crusafont specimens

Members: Douglas Boyer, Callie Crawford, Judit Marigó

Data: 14 published media, 14 specimens

PROJECT INFO

PROJECT INFO

Benefits of CT-scanning

- Non-destructive Dissection
 - Qualitative Morphology
 - Quantitative Morphology: Volumes, Surface Areas, Densities...
 - Precise Measurements of Internal and External Anatomy
 - Conservation of Unique Specimens
 - Comparable Data for Extant and Paleo Collections
- Digitally Record of Whole Specimen
 - Create Digital Specimens with High Resolution (2–100 microns)
 - Share Results Easily with Peers and Public
- Fast, Accurate Results
 - Preparation is Simple
 - Same Results As Cutting/Dissecting
- Relatively Easy
 - Can 'image' through a low-density container

Limits of CT-scanning

- Depends on Availability of a CT-Scanner
 - Rates vary for internal and external users!
 - Need to reserve time on busy machines
- Can be Costly
 - Most academic institutions charge internal rates of < \$60/hr
 - Reconstruction workstations and licensed software can be expensive
 - Need lots of data storage
- Samples must not move!

Basics of microCT-scanning

- X-ray tube creates cone beam
- Sample between source and detector
- Detector is X-ray sensitive
- Magnification based on proximity of sample to source

http://serc.carleton.edu/research_education/geochemsheets/techniques/CT.html

CT Imaging vs. 'normal' X-ray Imaging

- Computed Tomography Algorithm
- 3D Density map
 - 2D Slice = 3D Cross Section
 - Object Termed "Volume" or "Reconstruction"
 - 2D Pixel → 3D "Voxel"

Diversity of *Xenopus* (African Clawed Frogs)

Incorporating CT-scanning into Collections Digitization

- Imaging a specimen at 50–100 micron resolution
 - 1–2 hours of scanning time
 - ~1 TB storage

- Create high-impact collections of digital specimens for:
 - Systematics
 - Morphological Diversity
 - Paleontology
 - Public engagement
 - and more...

Incorporating CT-scanning into Collections Digitization

In addition to 'traditional' images of specimens

- Priorities @ UF Herpetology
 - Name-bearing type specimens
 - Florida amphibians and reptiles
 - Frogs of the World
 - Resources for teaching herpetology courses

Grow Global Impact of Collections