The Current State of Arthropod Biodiversity Data: Addressing Impacts of Global Change

Neil S. Cobb (Northern Arizona University) Katja Seltmann, (American Museum of Natural History), and Nico Franz (Arizona State University)

The Current State of Arthropod Biodiversity Data: Addressing Impacts of Global Change

- * How many species can we model future distributions under climate change? (n>30)
- Focus on North America United States > Canada > Mexico
- Specimen estimates for North American museums (current & projected)
- Digitization in North American museums
 - Biogeography
 - Collection Timeline
 - Major taxonomic & functional groups
- Promoting Observable species

Race Against Time: A Few Key Observations

- + Arthropods comprise ~70% of described species, only 15% of climate impact studies
- + 460-600 million specimens worldwide?, <50,000,000 digitized (~10%)
- → ~10% of North American arthropod species have "enough" occurrence data (n=30)
- + Cannot predict global change impacts without knowing existing species distributions
- + Arthropod occurrence data resides primarily in museum collections

Predicting Impacts of Climate Change on Species Distributions

rGBIF, SEINET

FIA/Landfire (1/0)

BIOMOD2⁺ Modeling Workflow

- ❖ 30-100 occurrence localities
- Distributed over entire range

Environmental Layers

Climate (WorldClim →BioClim)

Soils (gSSURGO)

DEM-based layers (Landfire) Habitat, Disturbance, etc. (Landfire)

4

Environmental Processing

Transformations and projections Adjusting resolution

Setting extent
Getting rid of outliers

Occurrence Records

Get climate envelope

BIOMOD2 Modeling

Algorithms, # Runs, Data split Evaluate individual algorithms Variable importance output Generate ensemble model Predicted suitable habitat map

Future/Past Distributions

<u>Future</u>

- Ensemble map of multiple GCMs
- Migration simulations (MigClim) Past
- LIG (~130kya), LGM (~21kya)) and mid-holocene (~6kya) from WorldClim (~5km)

Understanding Climate Change Impacts on Arthropods Ecological Niche Modeling

North American Arthropod Collections

(USA-Canada-Mexico)

Key Estimates

Current Holdings

237 million specimens accounted for¹

>17 million not accounted for²

254 million Total specimens in NA collections

85 million Total North American specimens (?)

6 million digitized North American specimens

North American Arthropod Collections

(USA-Canada-Mexico)

Key Estimates

Annual Additions

- 6 million total specimens digitized
- 2 million total specimens digitized per year?
- 3.5 million new specimens per year
- 1.1 million new North American specimens per year

The Data

- Museum Occurrence Records for United States & Canada
 - Three sources of data accessed March, 2014

Methods

The "Seltmann model 865B" Biodiversity Cluster Array

- 1. Compile raw data
- 2. Clean data
- 3. Format data
- 4. Compile & run scripts

Museum Occurrence Records for United States & Canada

- 2,166 Families
- 20,153 Genera
- 80,161 Species (105,000 total in NA [?])
 - 61,305 Species (Georeferenced)
 - 4,606,160 Specimen Records
 - 3,733,257 Georeferenced Records (81%)
 - 2,803,956 Identified to Species (60%)
 - 692,749 Unique Occurrences

Timeline of Arthropod Collecting?

Research Ready Data (identified to species & georeferenced)

Taxonomic Distribution: Expected vs. Observed Records

Ecological Distribution: Expected vs. Observed Records

Status of Research-Ready Arthropod Biodiversity Data

- 1. Fraction of specimens digitized, but enough to model for climate change impacts.
- 2. Biogeography of specimen records confirms geographic significant bias.
- 3. Historical data indicate enough taxa can be tested for climate change responses NOW.
- 4. Taxonomic breadth of data generally good (except Diptera & Coleoptera?).
- 5. Ecological breadth of data generally good (except predators & parasitoids).

Museums currently hold the vast majority of arthropod occurrence data!! How many arthropod species are observable in the field?

Can we follow the V&Vers (Vascular plant and Vertebrate scientists?)

Field-observable arthropod taxa

- Dragonflies some damselflies
- Other aquatic groups
- Butterflies & Moths
- Ants
- Grasshoppers
- Crickets
- Cockroaches
- Earwigs
- Vespid Wasps
- Miscellaneous species

Projects that use observations

- Odonata Central
- Butterflies & Moths of NA
- Moth Photographers Group
- BugGuide
- Cricket Crawl
- Lost Ladybug
- Great Sunflower Project
- Discoverlife (Bee Hunt)
- Life on Loosestrife

of NA arthropod species that can be observed in field and/or images

- 9,000 non-lepidopteran species
- 6,800 lepidopteran species
- 15,800 total observable species?
- 84,200 total "unobservable" species?

Interim Conclusions

Lots to do

Take Your Pick

Lots to work with

TCN Collaboration

