

Automated Updating of Phylogenies

Martha Kandziora and E. J. McTavish

Life and Environmental Sciences School of Natural Sciences University of California, Merced

June, 4th 2018

Steps to calculate a phylogeny from scratch:

1. Identify gene regions of interest

- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest

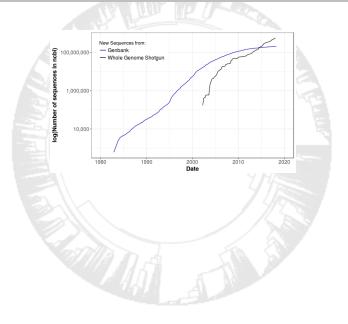
- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank

- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames

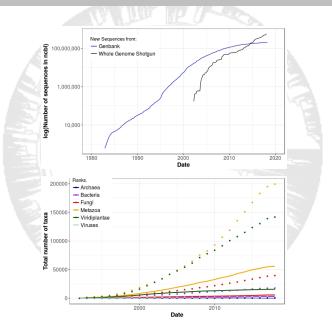
- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences

- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences
- 6. Concatenating datasets

- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences
- 6. Concatenating datasets
- 7. Calculating the phylogeny


- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences
- 6. Concatenating datasets
- 7. Calculating the phylogeny
- 8. Checking for taxon mis-identifications/mis-labelling

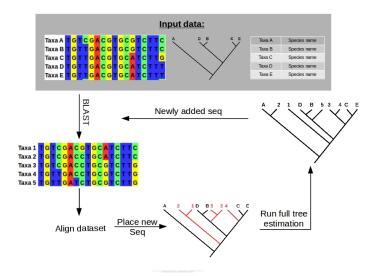
GenBank


GenBank is an open access sequence database of all publicly available nucleotide sequences and their protein translation

- started in 1982
- produced and maintained by NCBI
- most up-to-date and comprehensive DNA sequence information
- designed to provide and encourage access within the scientific community
- no restrictions on the use or distribution of GenBank data

Data Accumulation in GenBank

Data Accumulation in GenBank



- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences
- 6. Concatenating datasets
- 7. Calculating the phylogeny
- 8. Checking for taxon mis-identifications/mis-labelling

Steps to update a phylogeny:

- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences
- 6. Concatenating datasets
- 7. Calculating the phylogeny
- 8. Checking for taxon mis-identifications/mis-labelling

Aim of Physcraper

Steps to update a phylogeny:

- 1. Identify gene regions of interest
- 2. Sequencing taxa of interest
- 3. Download homologous sequences from GenBank
- 4. Possibly: manipulating the tipnames
- 5. Aligning the sequences
- 6. Concatenating datasets
- 7. Calculating the phylogeny
- 8. Checking for taxon mis-identifications/mis-labelling

Advantages

- Automatic tree updating
- Rapid data-to-phylogeny loop
- Apply data collected for other projects
- Re-uses previous phylogenetic inference to improve accuracy, speed
- Highly interoperable: ncbi and Open Tree of Life identifiers are retrieved

current implementation	under development
every input sequence is	
blasted	
blast against GenBank	
adds all homologous similar	
sequences	214

nder development last only some sequences
last only some sequences

current implementation	under development		
every input sequence is	blast only some sequences		
blast against GenBank	blast against local database		
adds all homologous similar			
sequences			

current implementation	under development	
every input sequence is	blast only some seguences	
blasted	blast only some sequences	
blast against GenBank	blast against local database	
adds all homologous similar	add only a subset	
sequences	add only a subset	

current implementation	under development	
every input sequence is blasted	blast only some sequences	
blast against GenBank	blast against local database	
adds all homologous similar sequences	add only a subset	

Further ideas: check for species acceptance,

current implementation	n under development	
every input sequence is	blast only some sequences	
blasted	blast only some sequences	
blast against GenBank	blast against local database	
adds all homologous similar	add only a subset	
sequences	aud only a subset	

Further ideas:

check for species acceptance, 'black list' of sequences not to be added,

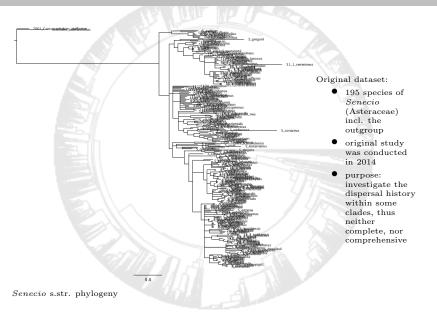
current implementation	under development		
every input sequence is	blast only some sequences		
blasted	ed blast only some sequences		
blast against GenBank	Bank blast against local database		
adds all homologous similar	add only a subset		
sequences	add only a subset		

Further ideas:

check for species acceptance, 'black list' of sequences not to be added, automatically concatenate datasets

Open Tree of Life

...will host the program. funded by NSF 1759846



tree.opentreeoflife.org

comprehensive, dynamic and digitally-available tree of life by synthesizing published phylogenetic trees along with taxonomic data

contains ALL named biodiversity, open access and digital, continuously updated

Updating an existing tree

Updating an existing tree

Table: Senecio s.str.add subset of input add all 2 seq. per sp.			
# species sp. with single seq. # of sequences	$194 \\ 151 \\ 246$	259 127 665	?247 ?143 ?357
Table	e: Sene	cioneae	add subset of
	input	add all	2 seq. per genus
# of species # of genera sp. with single seq. genera with single seq. # of sequences	$ \begin{array}{r} 36 \\ 148 \\ 7 \end{array} $	$617 \\ 101 \\ 441 \\ 40 \\ 1125$?244 ?97 ?214 ?44 287

Updated Senecio s.str.

seq. = sequence; sp. = species

phylogeny

Conclusion

- Effortless updating of phylogenies
- Minimize researcher time input
- Full maximum likelihood tree inference

Thanks for your attention!

... and thanks to Mark Holder and E.J. McTavish!

QUESTIONS?

Contacts:

https://github.com/McTavishLab/physcraper/tree/dev

https://github.com/blubbundbla martha.kandziora@yahoo.com

