Integrating relevant hydrologic measures with digitized biodiversity data to investigate climate change impacts on freshwater fishes

> Jason Knouft Department of Biology Saint Louis University

Environmental change and freshwater systems

 How will water temperature and flow regimes change with predicted changes in climate in the coming century?

• How will freshwater biodiversity respond to these changes?

• What is the role of digital biodiversity data?

Predicting species responses to environmental variation at large spatial scales

Climate + Landcover

Biodiversity

Direct prediction

Air temperature and water temperature

- 4°C increase in air temperature at 30°C (30°C to 34°C)
- Results in 0.4°C increase in water temperature (18.0°C to 18.4°C)

Caissie (2001), Journal of Hydrology

Water temperature sensitivity to changes in air temperature

Knouft and Ficklin (2017) Ann Rev Ecol Evol Syst

Water temperature in the Columbia River Watershed

Ficklin et al. (2014) Hydrol Earth Syst Sci

Predicted changes in summer water temperature in 2080

Ficklin et al. (2014) Hydrol Earth Syst Sci

Predicting species responses to environmental variation at large spatial scales

Integrating species locality data

• Species distribution modeling

Species richness

Local abundance

Estimates of in-stream habitat are critical

Fish habitat in the Sierra Nevada region

Ficklin et al. (2012) JAWRA

Brook trout distribution in the Sierra Nevada region

Integrating species trait data

• Trait data derived from online images

Lepomis macrochirus image from iDigBio

The relationship between flow and species morphology

<u>High Flow</u>

- Shallow/narrow caudal peduncle
- Deep/wide anterior body

Low Flow

- Large caudal peduncle
- Deep posterior body

Langerhans & Reznick 2009

Stonecat (Noturus flavus)

(Lincosionia mgrum)

Red shiner (*Cyprinella lutrensis*)

Predicting current and future stream flows

• Future monthly flows predicted based on 26 GCM scenarios using Soil and Water Assessment Tool (SWAT)

- nine climate models
- three emissions scenarios (A2, A1B, B1)

Chien, Yeh, and Knouft (2013) Journal of Hydrology

Flow Rate and Fish Morphology

Blackside Darter (Percina maculata)

Future flow data

• Use current flow vs. morphology relationships with future flow estimates (2050-2059) to predict future morphology

26 different flow scenarios
 Highest flow scenario - CGCM3, B1
 Median flow scenario - MIROC3.2, B1
 Lowest flow scenario - GFDL-CM2.0, B1

Future Expected Phenotypes

Michel et al. (2017) Climatic Change

Generating the environmental data

www.hydroclim.org

Jason Knouft – Saint Louis University Darren Ficklin – Indiana University Hank Bart – Tulane University

NSF DBI-1564727, 1564806, 1564896

• Monthly discharge and water temperature from 1950 – 2099

• 78 future GCM scenarios

• SWAT hydrologic model

• Data generated at the stream segment scale

Conclusions

• There are a wealth of biodiversity data for freshwater taxa

• Environmental data requirements are different for freshwater taxa compared to terrestrial taxa

• Generation of relevant physical data for freshwater systems is critical for the appropriate use of digital biodiversity data

Acknowledgements

<u>Collaborators</u> Dr. Darren Ficklin (Indiana University)

Postdocs Dr. Huicheng Chien, Dr. Matt Michel

<u>Graduate Students</u> Melissa Anthony, Dr. Collin Beachum, Dr. Sophia Niu

Funding

National Science Foundation (DEB-0844644, DEB-1404187, DBI-1564896) Environmental Protection Agency Saint Louis University

