Image analysis of modern and fossil plant silica bodies (phytoliths): Unlocking the evolution of grasses and grassland ecosystems

Caroline A.E. Strömberg
Department of Biology & Burke Museum
University of Washington
Seattle, WA
Grasslands are ecologically vital

- Grassy biomes make up >40% of Earth’s land surface

Color = grass-dominated habitats
Lehmann et al. (in prep.)
When and how did grassland ecosystems come to be?

• When did the grass family first originate and diversify?

• When did open-habitat grasses diversify and become ecologically dominant?
The grass family (Poaceae)

- Open-habitat habit evolved twice within Poaceae

(Common ancestor of Poaceae)

(after GPWG 2001, Sanchez-Ken et al. 2007)
Direct evidence for past grasslands

- Grass mesofossils and pollen are rare until the late Miocene—and often hard to interpret taxonomically.
Phytoliths *(plant silica)*

- **Grass epidermis:**
 - epidermal cell
 - stomata

- **Grass phytolith in sediment:**
 - 10 µm
Phytoliths

- Taxonomically useful within the grass family (Poaceae)

(after GPWG 2001, Sanchez-Ken et al. 2007)
Phytoliths

- Taxonomically useful within the grass family (Poaceae):
 - Diversification of ancient grass lineages
 - Ecology of past grass communities

(after GPWG 2001, Sanchez-Ken et al. 2007)
Radiation of open-habitat grasses

- Fossil phytolith morphotypes (Americas, Eurasia):

 → Open-habitat grasses diversified by 40 Ma

Grassland evolution in North America

• Earliest (early Miocene) grasslands were dominated by cool-temperate stipoid pooids

• Tropical, dry-adapted (C_4) chloridoids spread during the latest Miocene

Early grass diversification

- Phytoliths (+cuticle) from Late Cretaceous dinosaur coprolites and sediment, central India

Prasad et al. (2005, 2011)
Early grass diversification

- Phytolith characters (distribution, shape) from modern grasses in combined molecular-morphological phylogenetic analysis

- Dating of phylogeny using the Late K phytoliths

Prasad et al. (2011)
Early grass diversification

• Fossils are nested within Oryzeae

Characters:
2. Vertical bilobates
5. Papilla on long cells
6. Papilla on stomatal subsidiaries

Prasad, Strömberg et al. (2011), Nature Communications
Early grass diversification

- Poaceae evolved by the Early Cretaceous (?!?)
- Significantly earlier than previous estimates (70-95 Ma)
Needed:
Analysis of how phytolith shape maps onto the grass phylogeny

Grass silica short cell phytoliths (GSSCP)
Inadequate current GSSCP shape keys

- **Problem 1:** Qualitative or semi-quantitative, 2-D descriptions of GSSCP morphotypes
Inadequate current GSSCP shape keys

- **Problem 1:** Qualitative or semi-quantitative, 2-D descriptions of GSSCP morphotypes

 "saddle-shaped"

Chloris
Dry-adapted, C\textsubscript{4} open-habitat grass

Sinobambusa
Mesophytic, tree-forming C\textsubscript{3} bamboo

(Watson and Dallwitz 1992-)

Inadequate current GSSCP shape keys

- Problem 2: Outdated grass taxonomy
- Recent phylogenies have dramatically changed understanding of Poaceae relationships

(Gallaher et al. in prep.)
Creating a phylogenetic key to grass phytolith shape
Team GRASS:

Postdoc: Tim Gallaher

Grad students: Camilla Crifò, William Brightly

Undergraduates: Anna Schorr, Nik Pershing, Elie Aboulafia, Brittany McManus, Casey O’Keefe, Ashly Senske, Claire Marvet, Brian Connor, Sultan Akbar
Creating a phylogenetic key to grass phytolith shape

Goals:
- Measure 3-D shape of GSSCPs using geometric morphometrics
- Map 3-D shape onto current phylogeny
- Correlate with ecological and physiological characters

→ Trace evolution of GSSCP shape and size across Poaceae
→ Establish GSSCP shape/size diagnostic of particular clades/ecologies/physiologies
Unique properties of phytoliths

1. Phytoliths consists mainly of SiO$_2$ (66–91%), organic carbon OC (1–6%), H$_2$O (0–11%), Al (0.01–4.55%), and Fe (0–2.1%)

→ Phytoliths do not auto-fluoresce

→ The outer surface of phytoliths does not readily stain—or stain evenly (e.g., FITC)

(Neethirajan et al. 2009)
2. GSSCP phytoliths are small (~7-40 micrometers)

Resolution of e.g., micro-CT (100-200 micrometers) is not fine enough
3. Most grass species make >>1 type of GSSCPs

Anomochloa marantoidea

→ **GSSCPs have to be studied like assemblages**
Unique properties of phytoliths

4. Similar GSSCP shapes can be oriented differently in the tissue in different species

\rightarrow GSSCPs have to be studied in situ
Materials and methods

Taxa sampled:
- >200 grass genera from all Poaceae subclades
- Leaf material

(Gallaher et al. in prep.)
Materials and methods

Data collected:
• Orientation and distribution of GSSCP shape
Materials and methods

Data collected:
• Orientation and distribution of GSSCP shape
• Relative abundances of GSSC types in GSSCP assemblages extracted from leaves

>200 GSSCP /sample
Materials and methods

Data collected:
- Orientation and distribution of GSSCP shape
- Relative abundances of GSSC types in GSSCP assemblages extracted from leaves
- 3-D shape within each GSSCP type using confocal microscopy of extracted GSSCPs
- >10 specimens /GSSCP morphotype
3-D data workflow: Image acquisition

- Detailed workflow protocol to ensure consistency
3-D data workflow: *Image processing and analysis*

- Use 3-D surface meshes to calculate measures of size such as length, width, height, surface area and volume
- Transform and align meshes using Procrustes superimposition to remove size
3-D data workflow: Image processing and analysis

- Use 3-D surface meshes to calculate measures of size such as length, width, height, surface area and volume

- Transform and align meshes using Procrustes superimposition to remove size
3-D data workflow: **Outcomes**

- Quantified shape for morphometric analysis and phylogenetic mapping
- Animations and 3-D printable objects

Anomochloa marantoidea
Preliminary results

• Counts and confocal images of 3-D shape of GSSCPs for the Oryzoideae, Bambusoideae and early-diverging grasses
Problems encountered so far

- Finding stains that stain *all of* and *only* the GSSCPs

Rough mesh before smoothing algorithms have been applied

Oryza
Pharus
Problems encountered so far

• Finding stains that stain all of and only the GSSCPs

Solutions:
1. Tinkering with filters and brightness thresholds in the imaging software to get rid of “holes” and smooth surface
3. Development of a new stains in the form of hybridization probes specific to silica
Problems encountered so far

• Processing time for Procrustes analysis for meshes prohibitive

• Finding the ideal way to analyze 3-D data

Solutions:
1. Find optimal number of vertices in meshes

2. Landmark-free algorithms? (e.g., Pomidor et al. 2016)
Sharing data

• Online platform where people can use phylogenetic key, download images, videos, printable models etc. (= Morphobank?)
Conclusions

• GSSC phytoliths contain shape data that are phylogenetically relevant

• Collecting and analyzing these data are complicated by the unique properties of phytoliths

• Stay tuned (and suggestions welcome)!
Acknowledgements

Strömberg Lab

Grad students:
Camilla Crifo
Will Brightly

Postdocs:
Georgina Erra
Tim Gallaher

Undergrads & volunteers:
Thien-Y Le
Kim Smith
Ryan Thummel
Nik Pershing
Anna Schorr
Elie Aboulafia
Brittany McManus
Casey O’Keefe
Ashly Senske
Erin Sofonowski
Claire Marvet
Sultan Akbar

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF

Collaborators

Vandana Prasad
Dhananjay Mohabey
Ashok Sahni
Adam Leaché
Sue Hartley
Erika Edwards
Colin Osborne
Pascal-Antoine Christin
Elizabeth Kellogg
C4 Grasslands Working Group
Doris Barboni
Rosa Maria Albert
Katharina Neumann
Luc Vrydaghs
Rich Kay

Funding

RRF
Thank you for your attention!
Part II: Problems encountered so far

- Finding stains that stain *only* and *all* of the GSSCPs

GSSCPs in leaf epidermis

Montage of the individual slices from fluorescent confocal microscopy: 20 out of 210 slices shown.

Isolated GSSCP