Flowering phenology response to climate warming in the Pacific Northwest

Christopher W. Kopp, Barbara Neto-Bradley, Linda Jennings, Jas Sandhar, Siena Smith University of British Columbia, Dept. of Botany

Phenology and Warming

- Global climate warming (Socker 2013) Corresponds to shifting phonologies across many organisms during the past century
 - Spring phenologies have advanced 2.3
 days per decade (Parmesan & Yohe 2003)

Plant Responses

- Shifts depend on temporal and geographic positions
 - Greater advances at high latitudes
 - Earlier flowering species more sensitive to warming

3

Herbarium specimens

- Can be used to examine flowering phenology (via collection date of flowering specimens) over long periods of time and broad geographic gradients
 - For broad geographic scales it is important to pair collection data with climate data

Phenology in the Pacific Northwest

 In this study we investigated if species found in the Pacific Northwest (PNW) have flowering phenologies that are sensitive to climate warming

Hypotheses

- Day of collection (proxy for <u>flowering phenology</u>) of species across the Pacific Northwest is <u>sensitive to</u> <u>spring temperatures</u>
 - i.e. warmer springs → earlier collection dates
- Sensitivity will vary depending on <u>flowering date</u> and <u>geographic range</u> <u>position</u> (elevation, latitude and longitude)

Methods: Target species

- 1901-2015 collection dates and locations for herbs and shrubs were gathered from the Consortium of Pacific Northwest Herbaria
 - Targeted species have conspicuous flowers
 - At least 100 flowering specimens per species

Consortium of Pacific Northwest Herbaria Providing access to specimen data and digital resources from herbaria throughout Pacific Northwest North America

Methods: Climate data

- Climate data from ClimateNA_MAP (Wang et al. 2016):
 - collection location
 - year of collection
 - 1960-1990 means for that location

ClimateNA_MAP

-- An Interactive Platform for Visualization and Data Access

Wang et al. 2016

Methods: Determining responses

• Sensitivity to temperature

mean spring temp. at collection location
mean 1960-1990 spring temp.
Temp. anomaly

- spring: three months preceding mean species collection date
- Use linear regression (day of year vs. anomaly) to determine species' sensitivity to temperature

Results: Our dataset

Mean Geographic range position

- 8,540 specimens
 - 39 species
 - Mean collection dates
 - May 21 to August 12

Results: Regional temperatures (1901-2015)

• Study region temperatures increased 0.1°C/decade

Results: Sensitivity to spring temperatures

- 28 out of 39 species are sensitive (p<0.05) to spring temperatures
 - Day of collection changed between +0.3 and -9.3 days per 1°C increase in spring temperature

Early bloomers more sensitive to temperature

 Sensitivity to spring temperature decreases 1.4 days for every 30 day delay in mean flowering date

Coastal species more sensitive to temperature

 Sensitivity to spring temperature decreases 0.9 days per 1° longitude

Conclusions: Spring comes early to the coast

- Earlier flowering species are more sensitive to warming (Wolkovich et al. 2012)
- Spring "starts" earlier in the western part of the PNW
 - Species near the coast flower earlier and therefore are more sensitive to warming temperatures

Going forward

- Longitudinal gradients in coastal regions deserve more attention, especially concerning phenology and climate change
- With digitization, we can go bigger with more!

Questions?

Chris Kopp

References

- Cook, B. I., & Wolkovich, E. M. (2016). Climate change decouples drought from early wine grape harvests in France. Nature Climate Change, 6(7), 715. <u>http://doi.org/10.1038/nclimate2960</u>
- Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. **Global Change Biology**, **13**(9), 1860–1872. <u>http://doi.org/10.1111/j.1365-2486.2007.01404.x</u>
- Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. **Nature**, **421**(6918), 37–42.
- Primack, R.B. et al. (2009) Changes in the flora of Thoreau's Concord. Biol. Conserv. 142, 500–508
- Willis, C. G., Ellwood, E. R., Primack, R. B., Davis, C. C., Pearson, K. D., Gallinat, A. S., et al. (2017). Old Plants, New Tricks: Phenological Research UsingHerbarium Specimens. Trends in Ecology & Evolution, 32(7), 531–546. <u>http://doi.org/10.1016/j.tree.2017.03.015</u>
- Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., et al. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494–497. http://doi.org/10.1038/nature11014