Climate change, hydrology, and aquatic species distributions

Jason Knouft
Department of Biology
Saint Louis University

Outline

1) Efforts to relate climate and biodiversity

2) Flow variability and freshwater biodiversity

3) Freshwater biodiversity in the Mobile River basin

4) Flow-morphology relationships in Midwestern fishes

Outline

1) Efforts to relate climate and biodiversity

2) Flow variability and freshwater biodiversity

3) Freshwater biodiversity in the Mobile River basin

4) Flow-morphology relationships in Midwestern fishes

Global temperature change

Global precipitation change

Predicting species responses to climate across broad spatial scales

Air temperature and water temperature

- 4°C increase in air temperature at 30°C (30°C to 34°C)
- Results in 0.4°C increase in water temperature (18.0°C to 18.4°C)

Caissie (2001), Journal of Hydrology

Predicting species responses to climate across broad spatial scales

Predicting species responses to climate across broad spatial scales

Outline

1) Efforts to relate climate and biodiversity

2) Flow variability and freshwater biodiversity

3) Freshwater biodiversity in the Mobile River basin

4) Flow-morphology relationships in Midwestern fishes

Hydrological variability and freshwater biodiversity

- Flow volume and variability regulate patterns of biodiversity
- Species are adapted to particular flow regimes

Species-area relationship

Intermediate Disturbance Hypothesis

Hydrological variability, climate change, and freshwater biodiversity

• Flow volume and variability regulate patterns of biodiversity

• How will flow regimes change with predicted changes in temperature and precipitation in the coming century?

• How do we take advantage of biodiversity collections to predict the potential impacts of climate change on biodiversity?

Outline

1) Efforts to relate climate and biodiversity

2) Flow variability and freshwater biodiversity

3) Freshwater biodiversity in the Mobile River basin

4) Flow-morphology relationships in Midwestern fishes

Mobile River watershed

• Drains 110,000 km²

• Rich aquatic biodiversity

Soil and Water Assessment Tool (SWAT)

 Watershed-scale distributed hydrological model

 Generates streamflow predictions using contemporary temperature, precipitation, landcover, soil, and elevation data

Soil and Water Assessment Tool (SWAT)

- SWAT is a distributed watershed-scale hydrological model
- SWAT predicts the impact of changes in climate, land use and land cover, and agricultural management on water, sediment, and agricultural chemical yields
- Readily available input (weather, soils, land use, and topographic data)
- Incorporate projected future climate model predictions into SWAT to produce streamflow estimates in 2051-2060

Predicting future streamflows from 2051-2060 using SWAT

- Future flows predicted across the Mobile River watershed based on climate projections from 26 downscaled Global Climate Models
 - nine climate models
 (CGCM3.1, CNRM-CM3,
 GFDL-CM2.0, GFDL-CM2.1,
 IPSL-CM4, MIROC3.2,
 ECHO-G, ECHAM5/MPI-OM,
 MRI-CGCM2.3.2)
 - three emissions scenarios (A2, A1B, B1)

Streamflow in the Mobile River watershed (2051-2060)

Flow volume decreases

Flow variability increases

Predicting current and future hydrological habitat availability

 Integrate current species distribution data and current flow variables to estimate preferred habitat for each species

• Predict the distribution of future habitat based on future streamflow data generated using SWAT models

• Ecological niche modeling with Maxent

Future flow data

• 26 different flow scenarios

Highest flow scenario - CNRM-CM3 (France)

Median flow scenario - CGCM3.1 (Canada)

Lowest flow scenario - IPSL-CM4 (France)

- Flow and topographic variables
 - Annual maximum, minimum, mean, CV, slope

Museum-based species locality data

Fishes
103 species
(20,200 localities)

Crayfishes
12 species
(1,142 localities)

Mussels
16 species
(2,004 localities)

Climate Change and Ecological Niche Modeling

Etheostoma stigmaeum

Etheostoma stigmaeum

 $\frac{\text{Current Flow}}{\text{AUC} = 0.626}$ P < 0.0001 CV flow

Etheostoma stigmaeum

Future High Flow -17.2%

Etheostoma stigmaeum

Future Medium Flow -19.7%

Etheostoma stigmaeum

Future Low Flow -17.5%

Results

Fishes – 85 of 103 species with significant models

Crayfishes – 10 of 12 species with significant models

Mussels – 1 of 16 species with significant models

Changes in available flow habitat

Summary

• Flow volume is predicted to decrease in the Mobile River basin, while seasonality in flow is predicted to increase and shift.

• A range of responses to changes in flow by fishes and crayfishes, flow does not appear to be a good predictor of mussel distributions.

• Species' responses are fairly consistent among scenarios, although the most impacted species may be differentially affected based on the particular GCM scenario.

Outline

1) Efforts to relate climate and biodiversity

2) Flow variability and freshwater biodiversity

3) Freshwater biodiversity in the Mobile River basin

4) Flow-morphology relationships in Midwestern fishes

The relationship between flow and species morphology

High Flow

- Shallow/narrow caudal peduncle
- Deep/wide anterior body

Low Flow

- Large caudal peduncle
- Deep posterior body

Langerhans & Reznick 2009

Predicting current and future stream flow in Midwestern watersheds using SWAT

- Future flows predicted across the Rock, Illinois, Kaskaskia, and Wabash River drainages based on 26 model scenarios
 - nine climate models (CGCM3.1, CNRM-CM3, GFDL-CM2.0, GFDL-CM2.1, IPSL-CM4, MIROC3.2 ECHO-G, ECHAM5/MPI-OM, MRI-CGCM2.3.2)
 - three emissions scenarios (A2, A1B, B1)

Streamflow (2051-2060)

Rock River watershed

Estimation of flow

- 1. SWAT hydrologic models:
- 2. National Water Information System (NWIS) stream gauges

Monthly stream flow data at gauges < 500 m from collection localities

Results – Body shape & flow (*N. flavus*)

Noturus flavus
lateral view

Morphological response to changes in stream flow

Noturus flavus dorsal view

Summary from morphological study

Some species are morphologically adapted to flow regimes.

• Degree of response required to adapt to future flow regimes varies among populations.

Conclusions

• Predicting the responses of freshwater biodiversity to changes in climate requires a systems-level understanding of the physical environment.

• The value in biodiversity collections deserves appropriate efforts to quantify the physical environment.

Acknowledgements

Postdocs
Dr. Huicheng Chien, Dr. Matt Michel

Graduate Students
Collin Beachum, Sophia Niu, Melissa Anthony

Funding

National Science Foundation (DEB-0844644)
Environmental Protection Agency (RD834195)
Saint Louis University