Evaluating geographic patterns of morphological disparity in ferns using deep neural networks

Alex White
Postdoctoral Fellow
Smithsonian Institution
The number of species in any place on earth varies widely by latitude

Mannion et al., 2014
The latitudinal diversity gradient is pervasive across taxa:

- birds
- mammals
- reptiles
- amphibians
- insects
- plants

Kerkhoff et al. 2014
Explanations for the latitudinal diversity gradient generally invoke:

1) Differences in diversification rate
2) Differences in age and area
3) Differences in ecological limits (accommodation)
Species that are similar in shape and size perform a similar ecological function.

6 different species (Zosterops)

Wells 2017
Species that are similar in shape and size perform a similar ecological function.

How does morphological (shape) diversity vary according to latitude?

Do species at different latitudes subdivide ecological opportunity differently?
Species that are similar in shape and size perform a similar ecological function.

How does morphological (shape) diversity vary according to latitude?

Do species at different latitudes subdivide ecological opportunity differently?

Computer vision methods can help us quantify and summarize aspects of shape.
We focus our study on ferns

~12,000 species
distributed globally
Fern species numbers vary according to latitude

Estimated from 1.4 million museum records (GBIF)
Ferns are highly diverse in both size and shape
Ferns are well represented in digitized collections, including the US National Herbarium.
Our data:

All available IDigBio specimens for ferns and lycophytes

- ~517,000 images
- ~8600 species
- 70% global diversity
- ~320 genera
- 95% generic diversity
Our computer vision based approach:

Build a convolutional neural net and train it to label fern specimens:

- by genus
 - >500 specimens (86 genera)
 - >50 specimens (269 genera)
- by species
 - >50 specimens (1425 species)

80% of data used for training neural network
20% of data set aside for validation
We validate the model by feeding images with known labels through the network.
FernNet is 97% accurate at genus ID

3 genera in the tree fern family Cyatheaceae

Confusion is most often between closely related genera

Boxes contain examples of genera within the same family
FernNet is highly accurate for species ID (1425 species)

Accuracy in top 5 - 95.6%

Exact match accuracy - 81.5%
What pixels is FernNet using to make these identifications?
We use the penultimate network layer to quantify shape space occupation
We use the penultimate network layer to quantify shape space occupation.

Project this vector into 2D (UMAP)

Schematic of forward path through the neural network

Simonyan and Zisserman 2014
Ferns specimens generate a complex morphological landscape

...with clusters of variation based on latitude and climate
How does morphological (shape) diversity vary according to latitude?

Do species at different latitudes subdivide ecological opportunity differently?
How does morphological (shape) diversity vary according to latitude?

Do species at different latitudes subdivide ecological opportunity differently?
How does morphological (shape) diversity vary according to latitude?

Do species at different latitudes subdivide ecological opportunity differently?
Many contributors, many thanks

Rebecca Dikow
Mike Trizna
Paul Frandsen
Larry Dorr
Eric Schuettpelz

Manuela Dal Forno
Karen Golinski
Joel Nitta
Kathryn Picard
Mirian Tsuchiya

Smithsonian OCIO
NMNH Department of Botany
Extraneous objects could impact estimates of shape
So we are building masks to focus only on the plant in the image.
So we are building masks to focus only on the plant in the image.
What are the convolutional filters looking at?

4 example “feature maps”

early layer filters late layer filters
Plant leaf shapes are diverse and complex, with variations by latitude.

Computer vision methods can help us quantify and summarize leaf shape.