Integrating digital datasets to quantify morphological variability and understand species delimitation: an innovative approach using terebratulide brachiopods

Natalia López Carranza, Ph.D. candidate Dr. Sandra J. Carlson

UCDAVIS

DEPARTMENT OF EARTH AND PLANETARY SCIENCES

What are brachiopods?

- Marine invertebrates
- Lophotrochozoans—related to phoronids, bryozoans, annelids, and nemertreans
- Shells with two valves
- Lophophore—feeding and respiratory organ

Brachiopod diversity through time

- Highly diverse and abundant during Paleozoic
- Dramatic decline after Permian-Triassic extinction
- Current populations seem to be decreasing

Taken from Carlson (2016) adapted from Curry and Brunton (2007)

What drives our research?

- Commonly thought that external morphology offers little resolution for classification in terebratulide brachiopods
- Internal morphology is necessary but rarely analyzed quantitatively
- Testing validity of named species
- Biodiversity estimation

Dallinella occidentalis

Terebratalia transversa

Terebratalia coreanica

Laqueus erythraeus

Laqueus rubellus

Research questions

- Is it possible to discriminate named species based on loop morphology?
- Can we discriminate named species based on shell outlines?
- Is there a correspondence between loop shape and shell outline?

Long loops in brachiopods

- Calcareous structure that supports the lophophore
- Most conspicuous morphological character in terebratulids
- Phylogenetically and taxonomically important

Terebratalia transversa

How do we study long loops?

 To capture the shape and its variability in a quantitative manner, it is necessary to work with 3D reconstructions and 3D geometric morphometrics.

Terebratalia transversa

Methods

3D isosurface models	From CT scansAmira	
Landmark and semilandmark registration	Based on proposed landmark schemesStratovan Checkpoint	
Landmark superimposition	 Generalized Procrustes Analysis Semilandmark sliding using bending energy 	
Ordination Methods	 Principal Component Analyses (PCA) Canonical Variate Analyses (CVA) 	
Statistical methods	Procrustes ANOVA	

R packages geomorph and Morpho

Results—are loops informative?

classification accuracy: 100% Named species statistically different in shape (p=0.001)

Overall

Results—are loops informative?

Laqueus vancouveriensis

- Yes!
- Loops offer sufficient resolution to discriminate between named species.

Laqueus erythraeus

What happens when loops are not present?

- Loops are rarely preserved in fossils
- Are outlines a good proxy for loops?

Terebratalia smithi? Late Pliocene

Laqueus vancouveriensis, Pliocene

Outlines

- Laqueus
- Same specimens as 3D GM analysis
- Outlines of dorsal valve

Outline digitization	From CT scansIllustrator	
Elliptical Fourier Analysis	 Procrustes Analysis to align outlines EFA 	
Ordination Methods	 Principal Component Analyses (PCA) 	R packages Momocs and geomorph
Morphological integration	Partial least squares analysisLong loop CT dataset and outlines	

Outline results

Is there a correspondence between loop shape and shell outline?

Going further

- How can we take these morphological analyses a step further?
- Can we test our morphological predictions using a genetic data?
- Species delimitation analyses using genetic data.

Genetic analysis

Collection of specimens

 East and West Pacific localities • Approx. 10-15 indiv/ loc

DNA extraction and sequencing

- RADSeq—uses restriction enzyme to cut DNA in fragments
- Illumina sequencing

• Single nucleotide polymorphisms (SNPs), heterozygosity, population differentiation

 Maximum Likelihood and Bayesian phylogenetic inference

Species delimitation

Phylogenetic

analysis

• Bayesian analysis of sequence data using the multispecies coalescent model

L. rubellus T. coreanica Terebratalia transversa Dallinella occidentalis Laqueus erythraeus L. vancouveriensis

Pacific Ocean

Conclusions

- We can discriminate named species based on loop morphology. Species are statistically significantly different.
- Shell outlines offer less resolution when trying to discriminate between named species. However, outline data is valuable when loops are not present.
- Importance of treating named species as hypotheses to be tested.
- Importance of accurately estimating biodiversity.

Acknowledgments

- Dr. Douglas J. Rowland, Center for Molecular and Genomic Imaging, UC Davis.
- Dr. Kazuyoshi Endo (UTokyo), Dr. Yukinobu Isowa (Meiji University), Dr. Hideko Takayanagi (Tohoku University), Nanami Susuku (UTokyo)
- Dr. Mark Florence and Holly Little, National Museum of Natural History, Smithsonian Institution
- NHM Invert Paleo Collections Study Grant
- California Academy of Sciences
- Santa Barbara Museum of Natural History
- National Science Foundation grant EAR 1147537

Consejo Nacional de Ciencia y Tecnología

