Data from Drawers: Securing, mobilising and interrogating National Research Collections data

Andrew Young – Director, National Research Collections Australia (NRCA)
Australia: a mega-diverse continent

Australia has:

- A lot of biodiversity
 - 8% of the Earth’s species
- Unique biodiversity
 - 70%+ endemic
- Valuable biodiversity
 - soybean, cotton, sorghum, macadamia, acacias, eucalypts

The challenge and opportunity is to:

- Manage biodiversity for conservation and ecosystems services
 - species decline, Convention on Biological Diversity
- Exploit biological assets for industry
 - food, fibre, medicines, novel compounds
NRCA Mission

• National Research Collections Australia (NRCA) is a world-class “science-ready” collections research facility
• It discovers, documents, describes and explores Australia’s biodiversity
• NRCA delivers digital data and science to inform the conservation and use of Australia’s unique biological assets
What is NRCA?

- Six national biological collections
- 15+ million specimens
- 200 year time-series (1780)
- Atlas of Living Australia (ALA) web-based digital delivery and analysis capability
What is in NRCA?

- Physical specimens
 - whole organisms, skins, tissues samples, DNA samples
- Living collections
 - cultures, seed banks, seed orchards
- Digital specimens
 - sounds, photographs, X ray images, DNA sequences
- Contextual data
 - Location, site descriptions, species associations
- Unique $1+ billion research asset
Data challenges

1. **SECURE**: Integrated management of the data associated with the 15 million+ specimens e.g. single data system

2. **IMPROVE**: Increase the research value of collections through addition of new data layers e.g. metagenomics

3. **MOBILISE**: Digitize the collections for online data delivery e.g. specimen data, images, sounds

4. **ENABLE**: Online data delivery, visualization and analysis tools e.g. Atlas of Living Australia
1. SECURE: Integrated data management

Currently each collection has its own database:

- 5/6 are bespoke
- Only one is run by IMT
- Inefficient, ineffective and vulnerable...

Data management challenge – a single system:

- 15+ million specimens x 30-40 fields = 500 000 000 pieces of data
- Links to field books, living collections, nomenclature, associated samples (e.g. seeds, tissues, DNA samples, sounds)
- Loans (30 000 - 40 000pa) and curation
- Room for future expansion (30 000+ pa)
- New data layers e.g. genomes, images
- Biologically intuitive interface
- Seamless data delivery to the ALA

Collective Access
- Open source
- Thin client
- Fits IMT architecture
- Good functionality
2. IMPROVE: New data layers - metagenomics

• Soil microbes are ecosystem engineers
• BASE: A Genomic “National Framework Dataset”
• Bacteria, fungi and archea
• 1200 samples sequenced to 400-500,000 depth = 0.5 billion+ 400-800bp sequences
• 50+ physical variables
• Input, store, vizualise and analyze against other data layers e.g. vegetation, climate, new soil physical map
• Continental-scale predictive models of soil community structure and function
BASE Fungal diversity map 0-10cm horizon

Data from Drawers 2015 | Andrew Young
3. MOBILIZE: Digitization

WHY DIGITIZE?
Secure – digital copy
Mobilise – other science users e.g. biosecurity
Expose – crowd source databasing

• Phase I: Rapid digitization of 2-3 million specimens
• Phase II: Introduce digitization to current workflows - “born digital”

KEY ISSUES: Data volume (storage), prioritization & technologies

Last 5 years
Physical:
• 40 000+ loans a year

Digital ALA:
• 17 000 users a week
• 1.2 billion downloads a year
Current projects

- **ANIC** whole-drawer insect images
- **ANFC** digital radiography
- **ANH** Global Plants Initiative type specimen project
- **ANWC** bird sounds

potentially *multiple* species @ a single location/time
Digitization challenge

National collections 15+ million

Records <20%
Images <1%
Genomes 0%
Sounds <25%

ALA
4. ENABLE - ALA

- Access to data in context of other data
- Visualization tools
- Analysis tools
NRCA digitization strategy

A work in progress....

• Data systems and storage
• Digitization technologies
 – sounds, images, sequences etc...
• Workflows
• Prioritization of specimens
 – types, rare and threatened, biosecurity, degrading data (e.g. sound tapes), user demand
• Analysis and data manipulation tools

1. Data systems
 CSIRO IMT

2. Content
 NRCA

3. Data delivery
 ALA
Emerging challenges

Technical
- Extracting specimen data from entomological collections
- Genomic data
 - format and volume

Strategic
- Prioritization
- Selling the digitization value proposition
- Tracking impact not the downloads

<table>
<thead>
<tr>
<th>Occurrence downloads by reason</th>
<th>events</th>
<th>records</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific research</td>
<td>47,701</td>
<td>1.22B records</td>
</tr>
<tr>
<td>Ecological research</td>
<td>21,442</td>
<td>528.46M records</td>
</tr>
<tr>
<td>Conservation management/planning</td>
<td>7,234</td>
<td>656.26M records</td>
</tr>
<tr>
<td>Education</td>
<td>7,209</td>
<td>114.22M records</td>
</tr>
<tr>
<td>Environmental impact, site assessment</td>
<td>4,008</td>
<td>124.98M records</td>
</tr>
<tr>
<td>Systematic research</td>
<td>1,630</td>
<td>83.14M records</td>
</tr>
<tr>
<td>Other scientific research</td>
<td>620</td>
<td>5.38M records</td>
</tr>
<tr>
<td>Collection management</td>
<td>490</td>
<td>45.04M records</td>
</tr>
<tr>
<td>Biosecurity management, planning</td>
<td>428</td>
<td>284.06M records</td>
</tr>
<tr>
<td>Other</td>
<td>14,965</td>
<td>198.15M records</td>
</tr>
<tr>
<td>TOTAL</td>
<td>105,727</td>
<td>3.26B records</td>
</tr>
</tbody>
</table>

more/less...
NRCA impact

Basic

Environment

Insect evolution

Re-vegetation

Marine reserves

Industry

Weed control

Bio-prospecting

Biosecurity
Thank you

Andrew Young – Director, National Research Collections Australia