Stoneflies (Plecoptera), pre-European distributions and climate influenced future ranges in the Midwest

R. E. DeWalt, Y. Cao, J. L. Robinson, T. Tweddale, L. Hinz, and S. A. Grubbs*

Illinois Natural History Survey, *Western Kentucky University

Acknowledgments

• Funding: NSF DEB 09-18805 ARRA, IL DNR

Graduate students Ember Chabot, Massimo Pessino, and Eric South

• NSF interns: Erick Hernandez, Mary Brown

• Students: Matt Manade, Colin Daly, Priya Tripathy, Rahul Noronha, Jacob McQuaid, Brittanie Dabney, Natalie Marioni, Jessica Girard, Tiffany Hill

Museum curators, collection managers, and private collectors

What Are The Challenges to Reconstructing Distributions?

- Range loss has already occurred
- Published distributions are often inadequate:
 - Lack vouchers
 - Obsolete taxonomy
 - Low taxonomic resolution
 - Incomplete location information
- Where do we get data adequate for the question?

Museum Specimens Are a Source of Data

Pros	Cons
Oldest records/greatest range	Presence data-only
Identifications verifiable	Sample effort unclear
Many specimens available	Some inexact locations

Imperfect data, yes, but often the best available!

Objectives

Reconstruct the historic range of stoneflies in Midwest

- Characterize fauna
- Predict ranges of individual species
- Predict species richness patterns

Methods

- New samples in intact habitat
 - Multi-season
 - Adults and nymphs, rearing
 - Multi-method
- Museum specimens from regional institutions
 - 25 museums
 - ID to current standards
 - Digitize: unique identifier, verbatim,
 value added
 - Return fully curated collection and data
- Characterize assemblage
 - Observed richness inHUC6 drainages
 - EstimateS richness predictions and rare species

Single Species Distribution Modeling

- Environmental variables
 - Scale: 8700 HUC12 drainages, ~20,000 acres
 - 300 variables, eco-hydrology & historical vegetation
 - Variable reduction through cluster analysis

Producing "Full Model" for using Maxent

- No data withheld for validation
- Single record/species/HUC12
- Threshold for entry ≥14 HUC12s
- Richness from summing presences

Full Models for 78 of 154 Species

Regional Species Richness Model

Model Calibration

 80 "best" watersheds removed from Full Model to form Calibration Model

• Correlation of incidence between the calibration model and observed values in 80 watersheds

• Correlation of Full & Calibration model incidences per species

Calibration Model Performance: Incidence

Model Correlation vs. proportion records eliminated

One outlier, when removed, improves the R^2 to 0.69.

Conclusions

- Past distributions
 - Museum data provided >50% of 30K records for modeling, many were for areas where species no longer occurs
 - 78 of 154 species modeled
 - Species incidence well predicted
 - predicted richness followed observed richness patterns
- Much more than digitization needed to answer questions
 - >50 specimens not identified to species or incorrectly IDed
 - Much value added work necessary
 - New specimens were indispensable to answering questions
 - Future research
 - Past and future (climate) models for 450 EPT in Midwest
 - Use "least-cost path analysis" and distr. model outputs to examine pathways and barriers to dispersal