Resolving Orphaned Parts in Taxonomic Descriptions with Machine Learning and Natural Language Processing Methods

Steven S. Chong\(^1,2\), Dongfang Xu\(^1\), Thomas Rodenhausen\(^1\), Hong Cui\(^1*\)

\(^1\) University of Arizona, School of Information, Tucson, AZ, USA \(^2\) National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, USA

\(^*\)hongcui@email.arizona.edu

Introduction

Biodiversity literature contains vast amounts of information in human-readable formats. Morphological descriptions can be parsed to extract data for biological research.

Problem: Descriptions often contain non-specific structural parts (e.g. surface, apex, tip) not explicitly linked to their respective anchor organs. Bridging non-specific structures with anchors is necessary for machines to extract character information.

We compared different methods for resolving meronym (part-of) relations between non-specific parts and anchor organs.

Goal: Associate non-specific structure terms with their anchors because resolving part-of relationships is needed to correctly extract phenotypic characters

Task Example

Example description:

Leaflets articulated, inserted near the edges of the rhachis towards the adaxial side, lacking a differently coloured basal gland; stomata on lower surface only or on both surfaces; epidermal cells elongated parallel to long axes of leaflets.

<table>
<thead>
<tr>
<th>Non-specific structure terms</th>
<th>Anchor (parent) terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. edges</td>
<td>1. rhachis</td>
</tr>
<tr>
<td>2. adaxial side</td>
<td>2. leaflets</td>
</tr>
<tr>
<td>3. lower surface</td>
<td>3. leaflets</td>
</tr>
<tr>
<td>4. surfaces</td>
<td>4. leaflets</td>
</tr>
<tr>
<td>5. axes</td>
<td>5. leaflets</td>
</tr>
</tbody>
</table>

Methods

Preprocessing

Explorer of Taxon Concepts (ETC; Cui et al., 2016) Toolkit used to annotate structures, characters, and relationships in both development and test data as input for algorithms.

Created ontologies to indicate part-of relationships between structure terms in development and test data

Relation Identification Methods

1) **Syntactic rules:**
 - Candidate anchor organs located within three-sentence boundary of non-specific structure terms
 - Part-of relationships from ETC Toolkit involving “of-phrases” (e.g. blades of the leaves)
 - Possession words around a non-specific structure term
 - The non-specific structure ontology

2) **Support vector machine (SVM):**
 - For each anchor term, classify binary relations for all candidate non-specific structure terms and select those with highest probabilities
 - Feature Groups
 - Distance and position features
 - Bag-of-word features (e.g. “in”, “on”, “contains” before/after structure terms)
 - Semantic features from the ontology

Data

- Corpus: 3876 descriptions (7562 sentences) covering 11 taxon groups
- Example data sources: Plazi.org, Flora of North America
- Domain experts identified 39 non-specific structures
- Development dataset to develop the two relation identification methods (169 sentences, random sample)
- Test dataset to expand taxon and non-specific structures (167 sentences, stratified-random sample)

Results

Two baseline algorithms were implemented for comparison purposes:

- Baseline 1 chose subject entity in a sentence as its anchor term
- Baseline 2 selected nearest entity term to non-specific structure as its anchor term

Precision (P), recall (R), and F1 scores were calculated for the test and development datasets.

<table>
<thead>
<tr>
<th>Methods</th>
<th>P (Test)</th>
<th>R (Test)</th>
<th>F1 (Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 1 (subject term)</td>
<td>33.3%</td>
<td>33.3%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Baseline 2 (nearest term)</td>
<td>66.6%</td>
<td>66.6%</td>
<td>66.6%</td>
</tr>
<tr>
<td>Syntactic (ontology only)</td>
<td>91.1%</td>
<td>91.1%</td>
<td>91.1%</td>
</tr>
<tr>
<td>SVM (all features)</td>
<td>89.6%</td>
<td>89.6%</td>
<td>89.6%</td>
</tr>
</tbody>
</table>

Of the 366 non-specific structure term occurrences in the test dataset:

- SVM incorrect in 58 cases
- Syntactic method incorrect in 25 cases
- Both SVM and syntactic methods incorrect in 7 cases

Web Resources

Explorer of Taxon Concepts (ETC) Toolkit:

http://etc.cs.umb.edu/ETCsite/

Syntactic method source code:

https://github.com/biosemantics/charaparser/tree/master/charaenhance

SVM source code:

https://github.com/biosemantics/SVM-for-Nonspecific-Structure

Conclusions

- Ontologies were reliable knowledge sources for resolving orphaned parts in morphological descriptions.
- The results of the syntactic and SVM methods were complementary and mistakes rarely overlapped.
- The syntactic method performed better than the SVM method and will be implemented in the ETC Toolkit... but future research will examine the complementary nature of both methods.