Advancing Digitization of Biodiversity Collections (ADB C)

Smithsonian NMNH efforts to integrate collections based research

Rebecca N. Johnson AM PhD
Chief Scientist and Associate Director for Science, Smithsonian NMNH
Our collections – *the* most valuable research infrastructure
Why digitize?

Benefit to Collections Management and Collections Care:
• Access to collections and collection data
• Allows data to be shared virtually saving a trip to the collection
• Provides a ‘snapshot’ of specimen condition
• Potential for less specimen handling after initial digitization

Benefit to Research and Researchers:
• Expansion our understanding and conservation of plant diversity
• Digital basis for floral and faunal conservation assessments
• Contribution to “Big Data” efforts - visualization, analysis, and modeling

Opportunities for Innovation:
• Improved access for the public, educators, scientific community
• Rapid Capture
• Deep Learning
• Open access Smithsonian initiative
Why digitize?

PHOTOGRAPH BY NATHAN EDWARDS
146.3 million reasons to digitize
Our collections – the most valuable research infrastructure

• The case for digitization
• Rapid digitization supporting science
 • “Pilot” to “Production”
• Science through Deep Learning
• Lessons learned
• What’s next for NMNH?
3D Primate Collection

https://humanorigins.si.edu/evidence/3d-collection/primates
X-Ray vision – Fish inside out (images prepared for research)

https://ocean.si.edu/ocean-life/sharks-rays/x-rays-fish-reveal-diversity

Scientists in the Division of Fishes at the Smithsonian's National Museum of Natural History use X-ray imaging to study the complex bone structure and diversity of fish. This image gallery showcases X-ray images of sharks, their relatives, and bony fish, revealing how some fish have skeletons built from cartilage while others are built from bone.

In 2012, the National Museum of Natural History displayed "X-Ray Vision: Fish Inside Out," a temporary exhibit that showcased fish evolution and diversity through 40 black and white X-ray images prepared for research purposes. Each X-ray is paired with a photograph of the preserved fish specimen, demonstrating the value of radiography as a means of study that does not damage or destroy the specimen. See the touring schedule to find out where this exhibit will be shown next, through 2015.

To see even more photos from the exhibit, visit Encyclopedia of Life's X-Ray Vision Collection.
Case Studies for Digitizing collections with Rapid Capture

https://shiny.si.edu/massdigi/

1. Bumblebees and Carpenter Bees (Pilot 2014; Production 2019)
2. NMNH Herbarium rapid capture initiative (2015-)
3. Paleobiology (2017-)
4. Invertebrate Zoology initiatives (2017-)
5. Lessons learned and future projects
Case Study 1: Bumble bee and Carpenter Bee Rapid Capture

Pilot Goal:
Develop a **Workflow** to speed the process of digitization of Entomology pinned collections; image specimens (including labels) to **create complete records** using high resolution photographic equipment **for 14,400 bumble bees.**
Rapid Capture

- Staff intensive, 10 FTE staff, interns, and volunteer
- Expensive, $4.50 - $8.50 per specimen with imaging done on contract
- Unsustainable at that pace/larger collection
Bumble bee Rapid Capture: Pilot + Production

- Pilot (2014) 44,047 specimens captured in 8 weeks
- Production (2020) 30,020 specimens
- 34 million specimens in Entomology collection......
Case Study 2:
Digitizing the US Herbarium:
5 Million Botanical Specimens in 5 years

Sylvia Orli
US National Herbarium, NMNH
IT Manager
Botany
The Botany ‘Conveyor Belt’

• Start date – Sept. 15, 2015
• One Herbarium sheet every 4-6 seconds
• Goal is 500,000 sheets in 6 months
• Including all secondary costs it is approximately $1.00 US per sheet (not including staff time)
• 4 technicians are currently preparing the specimens
• 2,938,390 Specimens Digitized (76.12 % of the Project Goal of 3,860,000)
Deep Learning with Botanical Specimen Images

Deep learning models (convolutional neural networks) can be trained to rapidly classify morphological characters from digitized herbarium sheets.
Developing models to identify characters in the genus *Prunus* associated with key evolutionary events
Prunus avium
(sweet cherry)

Prunus serotina
(black cherry)

Prunus persica
(peach)

~1 trillion nucleotides sequenced

61 million pixels

Extra ‘eyes’ looking at morphology in the collections……..?

Through deep learning -> combining pixels and nucleotides – can analyze at scale transitions from tropical to temperate climates, polyploidy (genome doubling) events, and ancient hybridization.

400 species x 61 million = ~24.4 billion pixels
Case Study 3: Paleobiology

~44 million specimens = ~14 million digital records
Case Study 3: Paleobiology
- Mass Digi & Data interoperability
- How does our collection contribute globally?

Holly Little
Informatics Manager
Paleobiology
Smithsonian NMNH
EPICC TCN Mass Digitization with DPO

Pilot Project (January 2017) - Production Project (Fall/Winter 2017 + Fall/Winter 2019)

- Eastern Pacific Invertebrate Communities of the Cenozoic, NSF ADBC Thematic Collections Network
- 9 Partner Institutions
- 75,077 specimen lots documented
- 145,348 images captured
- >6000 locality records created

http://epicc.berkeley.edu/
Case Study 4: Invertebrate Zoology
(~1/3 of NMNH collection!!)

Bill Moser
Collections Manager,
Department of Invertebrate Zoology

Carol R Butler
Assistant Director for Collections

Anna Phillips
Research Zoologist and Curator of Parasitic Worms, Department of Invertebrate Zoology
Some IZ Digitization projects

- Mollusca Inventory (3+ years, 6 contractors per year): 560,942 records
- Brachyura Inventory (4 years, 2-3 contractors per year): 48,715 records
- Dry Porifera Inventory (1 contractor): 1,000 records
- R/V Albatross Inventory (1 contractor): 5,000 records
- USDA Parasites (validate & import data, curation, rearrangement (7 contractors)): 88,105 records
- Station Data Digitization (1 contractor): 32,000 records
- Transcription from 3x5 taxa cards (staff and volunteers): 20,000 records
- ULL Crustacean collection - Felder donation (1 staff): 17,000 records
- Digitization of NCI collection (1 staff): 20,662 records
- BOEM collection (vouchers, barcoding, and tissue samples (3 staff)): 8,000 records per year
- General staff cataloging (vouchers, collections backlog, etc. (CM staff)): ~12,000 per year
Using “the most comprehensive spatially explicit data set available for parasites, projected range shifts in a changing climate, and estimated extinction rates for eight major parasite clades.”

Anna Phillips
Research Zoologist and Curator of Parasitic Worms, Department of Invertebrate Zoology
Parasites Facing Extinction in a Changing Climate

- Compiled a spatially-explicit data set; 30,000+ NMNH specimen records (1/3 of the Parasite Collection)
- 5–10% parasite species could be extinct by 2070
- Full specimen records with georeferenced locality data, linkage to DNA sequence data, high-resolution imaging, etc. are the gold standard
- Specimen record completeness was a challenge

Lessons learned

• This is a resource intensive proposition (accountability is complex and important).
• Many stakeholders (good communication essential!!!).
• Maintain flexibility, and plan carefully and thoroughly.
• Frequent reevaluation and documentation to minimize cost and maximize efficiency.
• Crowd Sourcing Transcription.
• Thinking by collection type and not department......
• The value of the output is unquantifiable.............
NMNH Collections

- mineral sciences: 1%
- vertebrate zoology: 7%
- paleobiology: 30%
- entomology: 23%
- invertebrate zoology: 34%
NMNH Collections

Anthropology 2%
Botany 3%
Education & Outreach 0%
Vertebrate Zoology 7%
Paleobiology 30%
Mineral Sciences 1%
Entomology 23%
Invertebrate Zoology 34%
What next?

• Estimated **42.8 million** descriptive and surrogate digital records are needed to adequately represent the 146.3 million objects in the collection.

• Interoperability of datasets.

• Importance of Collaboration.

• Funding........

• Restrictions to funding severely limit what national collection can offer.
Thankyou

• The ‘Bumble bee team’
• The Botany Conveyor Belt team
• The Paleobiology team
• The Invertebrate zoology team
The state and relevance of global natural history collections in the 21st Century

Ian Owens, National Museum of Natural History, Smithsonian Institution
Global natural history collections

What is the state of the global collection?
• How many specimens, and of what type?
• Where are the specimens from, and where are they held?
• Are there gaps?

How ready is it to tackle global challenges?
• Do we have collections on the key groups and regions?
• How much of it is digitized?
• How extensive are the genomic repositories?

Does the expertise exist?
• Who curates the collection?
• Is there a global shortage of experts?
• Is there a demographic time bomb?
Collaborative network

72 Collection-based Institutions
- Large collections in terms of No of specimens/objects *
- Museums, Botanic Gardens, Universities, Research Inst.
- ca. 33% ‘Global South’, 33% Europe, 33% N. America

* >10 million specimens for European and N. American museums; >1 million specimens for Botanic Gardens and ‘Global South’ institutions
Mapping the global collection

19 Collection categories
- Botany
- Entomology
- Invertebrates
- Molluscs
- Arthropods
- Others
- Vertebrates
- Fish
- Amphibians
- Reptiles
- Birds
- Mammals
- Anthropology
- Cultural
- Archaeology
- Human biology
- Paleontology
- Vertebrates
- Plants
- Invertebrates
- Earth science
- Minerals
- Geology
- Geology
- Meteorites

No of SPECIMENS (log 10 scale)
16 Geographic regions

16 Geographic regions
- Terrestrial
- Australasia
- Marine
- Indian
- Europe
- Pacific
- North Pacific
- Southern
- Africa
- North America
- South Pacific
- Arctic Marine
- Asia Temperate
- South America
- North Atlantic
- Asia Tropical
- Antarctic
- South Atlantic

Role - Research, Collection, Volunteer
Demography – Year PhD awarded

STAFF EXPERTISE
16 Geographic regions

16 Geographic regions
Cumulative holdings of the world’s largest Natural History collections

Institutions ranked by size of collection (number of objects)

Cumulative No of objects (m)

>1.1 Billion specimens
One World Collection

72 Institutions
1.1 Billion specimens
Specimens, researchers and species

No of specimens, researchers and species (% total)

- Anthropology
- Botany
- Entomology
- Geology
- Invertebrate Zoology
- Paleobiology
- Vertebrate Zoology

- No of specimens (%)
- No of researchers (%)
- No of described species (%) *
- No of predicted species (%) #

For neontological collection categories:

* No of described species from Catalogue of Life
No of predicted species from Mora et al. (2011) PLoS Biol
(Note ongoing debate for some groups – eg, fungi, nematodes)
Geographical distribution of specimens

Terrestrial vs Marine Realms

Terrestrial (81%)

Marine (19%)

Within the Terrestrial Realm

Place of origin (%)

Place of holding (%)

North America
Europe
Australasia

South America
Asia
Africa

Pacific
Southern
Atlantic
Indian
Arctic

(81%)
Dark data

Digital records
Global Biodiversity Information Facility (GBIF)
>1 billion records (50% bird obs from Europe & N America)

ca. 16% of specimens are digitally available
(50% of these are plants)

Genomic samples
Global Genome Biodiversity Network (GGBN)
3.7 million records

ca. 0.2% of specimens are genomically available
Researcher expertise and demography

Researchers by region of employment
- Europe: 363
- North America: 92
- South America: 87
- Australasia: 134
- Africa: 429
- Asia: 1028

Researcher fields & PhD award date
- Anthropology
- Botany
- Entomology
- Geology
- Invertebrate Zoology
- Paleobiology
- Vertebrate Zoology

Decade PhD degree awarded
Collaborative global strategy

1. Global data platform * (see next slide)

1. Mobilizing existing data
 • Digital capture
 • Informatics

2. Collecting for the future
 • Gaps (e.g., tropical, polar & marine realms)
 • Global challenges (e.g., monitoring & key species)
 • Genomics (e.g., sampling & repositories)

3. Expertise
 • Training and capacity building
 • Community engagement
Future vision - Global data platform

SPECIMENS
Taxonomy, location, date, images
(eg iDigBio, ALA, DiSSCo)

GENOTYPES
(VarBank, GGBN, BOLD)

PHENOTYPES
(MorphoBank, TraitBank, ARBOR)

TAXONOMY & PHYLOGENY
(Catalogue of Life, ITIS, Open Tree of Life, EoL)

SPECIES DISTRIBUTIONS
(GBIF, Lifemapper, MoL)

ENVIRONMENT
(NEON, NASA, Google Earth)

CITIZEN SCIENCE
(iNaturalist, Zooniverse, iSpot, eBird)

LITERATURE
(BHL, Google Scholar)
The ‘Extended Specimen’ Concept

What does this mean for US collections?

Place of holding (%)

- North America: 43%
- South America
- Europe
- Asia
- Australasia
- Africa

Federal museums
Federal agencies
State museums
Private museums
Universities
Research Institutes
Botanic gardens
Herbaria

Intragroup Working Group on Scientific Collections (IWGSC) (2009)
Biodiversity Collections Network (2019)
National Academies of Science (2020)
A continental-scale collection project

Distributed System of Scientific Collections

The Idea:
The problem
The opportunity
Funding sources *
Core team

The Proposal:
Data
Users
Collaborative strategy
Writing team
Expert reviewers

Building support:
Institutions
Influencers
National networks
National funders
Other EU infrastructures

Funding:
The big idea
Project structure
Implementation plan
National support
Budget