Data Cleaning for Analysis and Publication
Using the OpenRefine Software Package

Arctic Data Center, CUAHSI, DataONE, Environmental Data Initiative, GBIF, iDigBio, NEON, Neotoma

Jeanette Clark, Deborah Paul

#datahelpdesk
Ecological Society of America 2020
Career Central
August
The Arctic Data Center
https://arcticdata.io

Data Archive
Portal for data discovery
Tools for data and metadata submission
Support services
Training and Outreach
Data Rescue

5,800 DATA SETS
725K DATA FILES
34 TB DATA STORAGE
990K+ FILE DOWNLOADS

1,500 CREATORS
14,000 USERS

Cumulative Data Objects

720,906 data files
image/jpeg 210,551
image/jpeg 110,151
image/jpeg 129,871
audio/wav

@arcticdatactr
Advancing the Digitization of Biological Collections
iDigBio Hub and Thematic (Museum) Collection Networks

Digitization
Workflows & Protocols
Dissemination

Research Use
Cyberinfrastructure
Tool collaboration
Portal development
ENM workshop
Research focus
Data quality
APIs

Training
Biodiversity informatics
Data skills and literacy
Collections software
Imaging
Project Management

total: 121,428,342

Education Outreach
Citizen Science
K-12 materials
Undergraduate
Fossil Clubs
Mentor teachers

Methods
Workshops
Webinars
Symposia
Conferences
Working Groups
Short Courses
Adobe Connect
Listservs
Publications
Social Media @idigbio
What do we mean by “Clean” Data?

More Data from More Sources =

- Structural Issues
- Inconsistent/unclear missing values
- Mixed data in single columns
- Mixed data types in single columns
- Ambiguous data values
- Data you can’t use
Simple guidelines for data management

• Use a scripted program
• Nonproprietary formats
• Keep a raw version of data
• Descriptive names
• Header line
• Plain ASCII text

Simple Guidelines for Data Management

• Design to add rows, not columns

• Each column should contain only one type of information

• Record a single piece of data only once; separate information collected at different scales into different tables. In other words, create a relational database.

Recognizing untidy data

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>species</td>
<td>tree</td>
<td>main trunks</td>
<td>reiterated trunks</td>
<td>limbs</td>
<td>branches</td>
<td>leaves</td>
<td>type</td>
<td>species</td>
<td>main trunk</td>
<td>reiteration</td>
<td>limbs</td>
<td>branch</td>
<td>leaf</td>
<td>TOTAL</td>
<td>% total</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Atlas</td>
<td>255144.9</td>
<td>46020.6</td>
<td>5477.7</td>
<td>13433.2</td>
<td>1101.2</td>
<td>tree</td>
<td>SESE</td>
<td>3569312</td>
<td>213247</td>
<td>53714</td>
<td>230945</td>
<td>17192</td>
<td>4084409</td>
<td>95.3491</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Ballantine</td>
<td>221966.4</td>
<td>7651.6</td>
<td>5922.9</td>
<td>11210.0</td>
<td>1084.8</td>
<td>tree</td>
<td>SESE</td>
<td>135815</td>
<td>0</td>
<td>0</td>
<td>8338</td>
<td>961</td>
<td>45114</td>
<td>3.3876</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Bell</td>
<td>253246.4</td>
<td>5454.3</td>
<td>5792.6</td>
<td>48500.7</td>
<td>1043.4</td>
<td>tree</td>
<td>THSE</td>
<td>31799</td>
<td>0</td>
<td>0</td>
<td>6343</td>
<td>864</td>
<td>39006</td>
<td>0.9106</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Broken Top</td>
<td>130282.9</td>
<td>4805.2</td>
<td>1608.1</td>
<td>5137.4</td>
<td>729.9</td>
<td>tree</td>
<td>ACMA</td>
<td>4444</td>
<td>0</td>
<td>0</td>
<td>925</td>
<td>264</td>
<td>5634</td>
<td>0.1315</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Buena Vista</td>
<td>128833.0</td>
<td>3486.5</td>
<td>0</td>
<td>8552.1</td>
<td>518.4</td>
<td>tree</td>
<td>UMCA</td>
<td>2921</td>
<td>0</td>
<td>0</td>
<td>937</td>
<td>273</td>
<td>4131</td>
<td>0.0964</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Demeter</td>
<td>155896.0</td>
<td>11085.6</td>
<td>3204.3</td>
<td>10054.1</td>
<td>768.7</td>
<td>shrub</td>
<td>RUSP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1974</td>
<td>686</td>
<td>2660</td>
<td>0.0620</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Epimetheus</td>
<td>226987.0</td>
<td>12915.7</td>
<td>1797.2</td>
<td>13885.2</td>
<td>1029.4</td>
<td>shrub</td>
<td>POMU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1271</td>
<td>1271</td>
<td>0.0296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Ilu vatari</td>
<td>339586.6</td>
<td>65003.9</td>
<td>12315.6</td>
<td>13987.0</td>
<td>1461.8</td>
<td>shrub</td>
<td>VAOV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>528</td>
<td>26</td>
<td>552</td>
<td>0.0129</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Kronos</td>
<td>134154.1</td>
<td>12204.4</td>
<td>7232.7</td>
<td>5036.1</td>
<td>597.3</td>
<td>shrub</td>
<td>COCO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>284</td>
<td>6</td>
<td>289</td>
<td>0.0067</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Pleiades I</td>
<td>182385.2</td>
<td>3735.0</td>
<td>1935.2</td>
<td>10846.6</td>
<td>762.2</td>
<td>shrub</td>
<td>POSC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>107</td>
<td>89</td>
<td>196</td>
<td>0.0045</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Pleiades II</td>
<td>235838.8</td>
<td>11183.4</td>
<td>4306.0</td>
<td>11306.5</td>
<td>877.7</td>
<td>shrub</td>
<td>RPHU</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>18</td>
<td>162</td>
<td>0.0037</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Prometheus</td>
<td>239414.0</td>
<td>25228.9</td>
<td>1612.6</td>
<td>12458.2</td>
<td>1086.0</td>
<td>shrub</td>
<td>XOXI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>112</td>
<td>112</td>
<td>0.0026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Rhea</td>
<td>143710.4</td>
<td>487.8</td>
<td>730.1</td>
<td>5524.2</td>
<td>691.2</td>
<td>shrub</td>
<td>VAPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>94</td>
<td>4</td>
<td>99</td>
<td>0.0023</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Zeus</td>
<td>243365.7</td>
<td>2885.5</td>
<td>1620.4</td>
<td>19104.7</td>
<td>954.3</td>
<td>shrub</td>
<td>PISI</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>3</td>
<td>1781.3</td>
<td>0.0</td>
<td>0</td>
<td>87.6</td>
<td>41.4</td>
<td>shrub</td>
<td>CHLA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>4</td>
<td>6312.0</td>
<td>356.3</td>
<td>73.5</td>
<td>214.1</td>
<td>43.8</td>
<td>shrub</td>
<td>GASH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>5</td>
<td>2068.2</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>2.5</td>
<td>shrub</td>
<td>SAC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>6E</td>
<td>18697.4</td>
<td>0.0</td>
<td>0</td>
<td>1056.2</td>
<td>66.3</td>
<td>shrub</td>
<td>SESE geo</td>
<td>3569312</td>
<td>213247</td>
<td>53714</td>
<td>230945</td>
<td>17192</td>
<td>4084409</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>6W</td>
<td>14651.5</td>
<td>7.7</td>
<td>0</td>
<td>626.3</td>
<td>49.6</td>
<td>shrub</td>
<td>SESE epi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>12</td>
<td>232.1</td>
<td>0.0</td>
<td>0</td>
<td>11.2</td>
<td>10.3</td>
<td>shrub</td>
<td>SESE geo</td>
<td>3569312</td>
<td>213247</td>
<td>53714</td>
<td>230945</td>
<td>17192</td>
<td>4084409</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>18</td>
<td>15632.0</td>
<td>0.0</td>
<td>0</td>
<td>946.3</td>
<td>106.8</td>
<td>shrub</td>
<td>PSME geo</td>
<td>135815</td>
<td>0</td>
<td>0</td>
<td>8338</td>
<td>961</td>
<td>145114</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>19</td>
<td>11805.5</td>
<td>0.0</td>
<td>0</td>
<td>770.1</td>
<td>80.3</td>
<td>shrub</td>
<td>PSME epi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8338</td>
<td>961</td>
<td>145114</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>20</td>
<td>309.5</td>
<td>0.0</td>
<td>0</td>
<td>12.5</td>
<td>5.9</td>
<td>shrub</td>
<td>TSHE geo</td>
<td>31740</td>
<td>0</td>
<td>0</td>
<td>6332</td>
<td>860</td>
<td>38932</td>
<td>0.9900</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>22</td>
<td>25618.3</td>
<td>0.0</td>
<td>0</td>
<td>1504.0</td>
<td>120.2</td>
<td>shrub</td>
<td>TSHE epi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics of Tidy Data

Observations

● Separate tables for each entity measured
Recognizing untidy data

Table 1

<table>
<thead>
<tr>
<th>species</th>
<th>tree</th>
<th>main trunks kg</th>
<th>reiterated trunks kg</th>
<th>limbs kg</th>
<th>branches kg</th>
<th>leaves kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESE</td>
<td>Atlas</td>
<td>256144.9</td>
<td>46020.6</td>
<td>5477.7</td>
<td>13433.2</td>
<td>1101.2</td>
</tr>
<tr>
<td>Ballantine</td>
<td>221966.4</td>
<td>7651.6</td>
<td>5922.9</td>
<td>11210.0</td>
<td>1084.8</td>
<td></td>
</tr>
<tr>
<td>Bell</td>
<td>253246.2</td>
<td>5454.3</td>
<td>5792.6</td>
<td>48500.7</td>
<td>1043.4</td>
<td></td>
</tr>
<tr>
<td>Broken Top</td>
<td>130928.9</td>
<td>4805.2</td>
<td>1608.1</td>
<td>5137.0</td>
<td>729.9</td>
<td></td>
</tr>
<tr>
<td>Buena Vista</td>
<td>128333.0</td>
<td>3486.5</td>
<td>0.0</td>
<td>8552.1</td>
<td>518.4</td>
<td></td>
</tr>
<tr>
<td>Demeter</td>
<td>155896.0</td>
<td>1108.6</td>
<td>3204.3</td>
<td>10054.1</td>
<td>768.7</td>
<td></td>
</tr>
<tr>
<td>Ephemetheus</td>
<td>226987.0</td>
<td>12915.7</td>
<td>1797.2</td>
<td>13585.2</td>
<td>1029.4</td>
<td></td>
</tr>
<tr>
<td>Iluvatar</td>
<td>349586.6</td>
<td>65003.9</td>
<td>12315.6</td>
<td>13987.0</td>
<td>1461.8</td>
<td></td>
</tr>
<tr>
<td>Kronos</td>
<td>134154.1</td>
<td>12204.4</td>
<td>7232.7</td>
<td>5036.1</td>
<td>597.3</td>
<td></td>
</tr>
<tr>
<td>Pleiades I</td>
<td>182385.2</td>
<td>3735.0</td>
<td>1935.2</td>
<td>10846.6</td>
<td>762.2</td>
<td></td>
</tr>
<tr>
<td>Pleiades II</td>
<td>235838.6</td>
<td>1118.4</td>
<td>4306.0</td>
<td>11306.5</td>
<td>877.7</td>
<td></td>
</tr>
<tr>
<td>Prometheus</td>
<td>239414.0</td>
<td>25228.9</td>
<td>1612.6</td>
<td>12458.2</td>
<td>1086.0</td>
<td></td>
</tr>
<tr>
<td>Rhea</td>
<td>5655</td>
<td>487.0</td>
<td>730.1</td>
<td>5522.4</td>
<td>691.2</td>
<td></td>
</tr>
<tr>
<td>Zeus</td>
<td>4177.0</td>
<td>0.0</td>
<td>0.0</td>
<td>87.6</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>87.6</td>
<td>41.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6312.0</td>
<td>356.0</td>
<td>73.5</td>
<td>214.1</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>206.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.7</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>6E</td>
<td>18697.4</td>
<td>0.0</td>
<td>0.0</td>
<td>1055.2</td>
<td>66.3</td>
<td></td>
</tr>
<tr>
<td>6W</td>
<td>14651.5</td>
<td>7.7</td>
<td>0.0</td>
<td>626.3</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>614.4</td>
<td>0.0</td>
<td>0.0</td>
<td>28.1</td>
<td>17.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>232.1</td>
<td>0.0</td>
<td>0.0</td>
<td>11.2</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>15632.0</td>
<td>946.3</td>
<td>106.8</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11805.5</td>
<td>0.0</td>
<td>0.0</td>
<td>770.1</td>
<td>80.3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>309.5</td>
<td>0.0</td>
<td>0.0</td>
<td>12.5</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>25618.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1504.0</td>
<td>120.2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>448.7</td>
<td>0.0</td>
<td>0.0</td>
<td>18.5</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>type</th>
<th>species</th>
<th>main trunk</th>
<th>reiterated</th>
<th>dry masses (kg)</th>
<th>leaf</th>
<th>TOTAL</th>
<th>% total</th>
</tr>
</thead>
<tbody>
<tr>
<td>tree</td>
<td>SESE</td>
<td>3569312</td>
<td>213247</td>
<td>53714</td>
<td>239095</td>
<td>17192</td>
<td>4084409</td>
</tr>
<tr>
<td>tree</td>
<td>PSME</td>
<td>135815</td>
<td>0</td>
<td>8338</td>
<td>961</td>
<td>145114</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>TSHE</td>
<td>31799</td>
<td>0</td>
<td>6334</td>
<td>864</td>
<td>390066</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>ACMA</td>
<td>4444</td>
<td>0</td>
<td>925</td>
<td>264</td>
<td>5634</td>
<td></td>
</tr>
<tr>
<td>tree</td>
<td>UNCA</td>
<td>2921</td>
<td>0</td>
<td>937</td>
<td>273</td>
<td>4131</td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>RUSP</td>
<td>0</td>
<td>1974</td>
<td>666</td>
<td>2660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>POMU</td>
<td>0</td>
<td>1271</td>
<td>1271</td>
<td>0.0296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>VA0V</td>
<td>0</td>
<td>552</td>
<td>552</td>
<td>0.0129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>VA0V</td>
<td>0</td>
<td>289</td>
<td>289</td>
<td>0.0067</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>POMU</td>
<td>0</td>
<td>107</td>
<td>196</td>
<td>0.0045</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>VAPA</td>
<td>0</td>
<td>44</td>
<td>44</td>
<td>0.0037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>VAPA</td>
<td>0</td>
<td>94</td>
<td>94</td>
<td>0.0023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>CHIA</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>0.0027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>GASH</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0.0009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrub</td>
<td>SACA</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>species</th>
<th>geo</th>
<th>epi</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESE</td>
<td>3569312</td>
<td>213247</td>
</tr>
<tr>
<td>SESE</td>
<td>3569312</td>
<td>213247</td>
</tr>
<tr>
<td>PSME</td>
<td>135815</td>
<td>0</td>
</tr>
<tr>
<td>PSME</td>
<td>135815</td>
<td>0</td>
</tr>
<tr>
<td>TSHE</td>
<td>31799</td>
<td>0</td>
</tr>
<tr>
<td>TSHE</td>
<td>31799</td>
<td>0</td>
</tr>
<tr>
<td>ACMA</td>
<td>4444</td>
<td>0</td>
</tr>
<tr>
<td>UNCA</td>
<td>2921</td>
<td>0</td>
</tr>
<tr>
<td>RUSP</td>
<td>0</td>
<td>1974</td>
</tr>
<tr>
<td>POMU</td>
<td>0</td>
<td>1271</td>
</tr>
<tr>
<td>VA0V</td>
<td>0</td>
<td>552</td>
</tr>
<tr>
<td>VA0V</td>
<td>0</td>
<td>289</td>
</tr>
<tr>
<td>POMU</td>
<td>0</td>
<td>107</td>
</tr>
<tr>
<td>VAPA</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>VAPA</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>CHIA</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>GASH</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>SACA</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Characteristics of Tidy Data

Observations

- Separate tables for each entity measured
- Each row represents a single observed entity
Recognizing untidy data

All the same observation? No.
Characteristics of Tidy Data

Observations

- Separate tables for each entity measured
- Each row represents a single observed entity

Variables

- All values in a column are of the same type
Recognizing untidy data

<table>
<thead>
<tr>
<th>species</th>
<th>tree</th>
<th>main trunk</th>
<th>reiterated trunk</th>
<th>limbs</th>
<th>branches</th>
<th>leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESE</td>
<td>Atlas</td>
<td>25644.9</td>
<td>4802.0</td>
<td>547.7</td>
<td>13433.2</td>
<td>1101.2</td>
</tr>
<tr>
<td>SESE</td>
<td>Ballantine</td>
<td>221966.4</td>
<td>7651.6</td>
<td>5922.9</td>
<td>11210.0</td>
<td>1084.8</td>
</tr>
<tr>
<td>SESE</td>
<td>Bell</td>
<td>253246.4</td>
<td>5454.3</td>
<td>5792.6</td>
<td>48500.7</td>
<td>1043.4</td>
</tr>
<tr>
<td>SESE</td>
<td>Broken Top</td>
<td>130928.9</td>
<td>4805.2</td>
<td>1608.1</td>
<td>5137.4</td>
<td>729.9</td>
</tr>
<tr>
<td>SESE</td>
<td>Buena Vista</td>
<td>128833.0</td>
<td>3486.5</td>
<td>0</td>
<td>8552.1</td>
<td>518.4</td>
</tr>
<tr>
<td>SESE</td>
<td>Demeter</td>
<td>155896.0</td>
<td>11085.6</td>
<td>3204.3</td>
<td>10054.1</td>
<td>768.7</td>
</tr>
<tr>
<td>SESE</td>
<td>Epimetheus</td>
<td>226987.0</td>
<td>12915.7</td>
<td>1797.2</td>
<td>13585.2</td>
<td>1029.4</td>
</tr>
<tr>
<td>SESE</td>
<td>Iliuvatar</td>
<td>349586.6</td>
<td>65003.9</td>
<td>12315.6</td>
<td>13987.0</td>
<td>1461.8</td>
</tr>
<tr>
<td>SESE</td>
<td>Kronos</td>
<td>134154.1</td>
<td>12204.6</td>
<td>7232.7</td>
<td>5038.9</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Pleiades I</td>
<td>182385.2</td>
<td>3735.0</td>
<td>1935.2</td>
<td>1084.3</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Pleiades II</td>
<td>235838.8</td>
<td>1118.4</td>
<td>4306.0</td>
<td>1139.0</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Prometheus</td>
<td>239414.0</td>
<td>25228.9</td>
<td>1612.6</td>
<td>1245.8</td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Rhine</td>
<td>14710.4</td>
<td>487.8</td>
<td>730.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>Zeus</td>
<td>243365.7</td>
<td>2885.5</td>
<td>1620.4</td>
<td>1910.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1761.3</td>
<td>4632.0</td>
<td>206.0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3632.0</td>
<td>356.0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>206.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>6E</td>
<td>18697.4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>6W</td>
<td>14651.5</td>
<td>7.7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>614.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>232.1</td>
<td>0</td>
<td>11.2</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>15632.0</td>
<td>0</td>
<td>946.3</td>
<td>106.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11805.5</td>
<td>0</td>
<td>770.1</td>
<td>80.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>309.5</td>
<td>0</td>
<td>12.5</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25618.3</td>
<td>0</td>
<td>1504.0</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>geo</td>
<td>3569312</td>
<td>2123274</td>
<td>53714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SESE</td>
<td>epi</td>
<td>135815</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSME geo</td>
<td>135815</td>
<td>0</td>
<td>8338</td>
<td>961</td>
<td>145114</td>
<td>1.0</td>
</tr>
<tr>
<td>PSME epi</td>
<td>135815</td>
<td>0</td>
<td>8338</td>
<td>961</td>
<td>145114</td>
<td>1.0</td>
</tr>
<tr>
<td>TSHE geo</td>
<td>31740</td>
<td>0</td>
<td>6332</td>
<td>860</td>
<td>38932</td>
<td>0.99</td>
</tr>
</tbody>
</table>

All the same variable? No.
Characteristics of Tidy Data

Observations

- Separate tables for each entity measured
- Each row represents a single observed entity
- Observations (rows) are all unique

Variables

- All values in a column are of the same type
- All columns pertain to the same observation (row)
- Each column represents either an identifying or measured variable
A not-so-reproducible workflow
Building a reproducible workflow

Raw, messy data

Clean, raw data

Merged/summarized derived data

Figures, tables, maps
Where data come from matters! (a sample)

- **Excel**
 - Automatic conversion of gene names to dates or floating point numbers*
 - Date values can be converted when transferring data between operating systems and applications

- **Text (e.g. CSV) & Excel**
 - Free-form structure - lack of enforcement of column-row structure, type consistency

- **Text (e.g. CSV)**
 - Inconsistent structure - quotes, commas, missing values, spaces

- **Database**
 - Enforced structure - tables, column typing
 - Specialized methods for interaction (pros and cons to this)

The ESAUSSEE Data Help Desk

who we are and how to find us

Amber Budden, @aebudden, @DataONE_org, aebudden@epscor.unm.edu

Deborah Paul, @idbdeb, @idigbio, dpaul@fsu.edu

Dmitry Schigel, @dschigel, @GBIF, dschigel@gbif.org

Karl Benedict, @kbene, kbene@unm.edu, president@esipfed.org

Kristen Vanderbilt, @vanderbik, @EDIgotdata, krvander@fiu.edu

Kyle Copas, @kylecopas, @GBIF, kcopas@gbif.org

Laura Brenskelle, @lbreorsk, @idigbio, lbrensk@ufl.edu

Margaret O'Brien @, @EDlgotdata, margaret.obrien@ucsb.edu

Megan Jones, @MeganAHJones, @NEON_sci, mjones01@battelleecology.org

Rebekah Wallace, www.eddmaps.org, bekahwal@uga.edu
Messy data? Repetitive data tasks?
Increase Reproducibility and Productivity using tools like Open Refine
Data lessons compiled - inspired by workshop

Georeferencing for Research Use of Museum Collections Data

- Data mapped to standards
 - supports use and re-use (e.g. Darwin Core DwC, Ecological Metadata Language EML)
 - standards help with data validation and cleaning

- Data have issues
 - what are some you have experienced
 - need to be addressed before applying research methods
 - keep raw data raw
 - track your changes

- Data visualization is key
 - QGIS lessons
 - Open Refine
 - R, etc.

Carabidae (beetles) of California
(Fun!) features and functions in Open Refine

- runs on your computer (not in the cloud)
- data formats supported
- raw data
- column manipulation
- text facet
- routine cleaning (white space)
- clustering
- step-wise editable task script
- APIs
- regular expressions
- export
- share project files
Open Refine - getting started is quick and easy

- download and install
- launch
- import your data
- your raw data is NOT touched
- supported data formats
- subset data
Open Refine - managing columns

- reorganize columns easily
Open refine - text facet

lists and counts the distinct values in a column
Open Refine - the magic of clustering algorithms
or how to find issues that abc sort won’t
and fix them all at once - no hunting
Open Refine - manages pesky white spaces

<table>
<thead>
<tr>
<th>specificEpithet</th>
<th>scientificName</th>
<th>weight</th>
<th>length</th>
<th>sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>californicus</td>
<td>Facet</td>
<td>30.5</td>
<td>165</td>
<td>male</td>
</tr>
<tr>
<td></td>
<td>Text filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>californicus</td>
<td>Edit cells</td>
<td></td>
<td></td>
<td>Transform...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Trim leading and trailing whitespace
- Collapse consecutive whitespace
- Unescape HTML entities
- To titlecase
- To uppercase
- To lowercase
- To number
- To date
- To text
- Blank out cells

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23.5</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>176</td>
</tr>
</tbody>
</table>
Open Refine - add data to your data using APIs

that's application programming interface
Open Refine - saves your steps

- supports reproducibility
- tracks your work for you
- easy to go back to earlier steps with confidence
Open Refine - export your data, share project files

select the **format**
export subsets too
and **project files**
Open Refine - make some friends

- share this tool with students, friends, families, colleagues
- imagine future tools, think beyond spreadsheets

Increase Reproducibility and Productivity using tools like Open Refine

Magic is here. Ask for it, plan for it.
Looking for next steps now?

R, Open Refine, and Data Management resources

- The #datahelpdesk is ready to offer data assistance!
- #CareerCentral Q and A: Wednesday, August 5th, 9:30-10:30 PDT (12:30-1:00 EDT)
- Data Carpentry lessons
- on Twitter #ESA2020 #datahelpdesk