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(national scale fungal databases)

Fungal fruiting records, 
compiled from European 
databases, into one unified 
ClimFun ‘meta-database’

• 6 million total records 

• 3-4 million commonly 
utilized

• For most analyses: 1970-
2010

• A collaboration of 18+ 
scientists

Andrew et al. 2017. Big data 
integration: Pan-European fungal 
species observations’ assembly 
for addressing contemporary 
questions in ecology and global 
change biology. Fun. Bio. Rev., 31: 
88-98

The current ‘ecological era’: big data

- massive amounts gathered quickly through the digitization of museum, 
herbaria records, plus citizen science projects (molecular ‘big data’, too)

- combining data allows even greater scientific potential, does it not?

* further information on the data and results are presented in a poster this evening



What can be addressed with fungal fruitbody 
records?
Past to present impacts to fungi,

- our only historical source

…at extensive spatiotemporal coverage(s),
- representative of continuous environmental gradients (when 
aggregated) more than field samples can be (to this date)

…of global change (climate, land-use, pollution).
- reproductive structures might respond more to climatic 
conditions than vegetative structures

(wikimedia commons)

All data have limitations.
All data are also ‘pieces of the puzzle’. 

Ephemeral
Sporadic

Reproductive
Presence-only
Non-mycelial



Linking biological data to the changing environment:
varied sources and formats of explanatory variables

Not a simple task. Many potential issues:

- applied (file formats; geocoordinate formats; availabilities of the data; how were the 
data created (field observations or models) and what is their reliability(-ies); must be 
available for country(-ies) of interest)

- spatial (continuity of data points; sample intensity(-ies); spatial resolution(s))

- temporal (past, present, or future; static or dynamic covariates; (non-)matching 
timescales; temporal resolution(s) and extent(s))

- aggregating (point-based or gridded; values based on sample intensity or spatial extent; 
variability; mean; min.; max.)

- interpretability (interpolation; transference;  projection; reliability)

- ecological use and meaning

… a balance between 
what we would like to 
address, and what we 
can address given the 

available data



Example 1: static covariates to explain fungal assemblages 
and their environmental correlates at the European scale 

Fungal species 
assemblages: what drives 
their large-scale patterns?

- 50x50 km resolution

- Explanatory variables: single 
time point [aggregations] 
that best matched fungal data

- Fungal data: single time 
point (1990-2010) and two 
time points (1970-1990 vs. 
1991-2010)

- Means within a grid based 
on locations of collections 
(thus relatable to actual 
fruiting conditions) instead of 
spatial uniformity across each 
grid

Data sources
- WorldClim (climate)
- Joint Research Centre -
European Soil Data 
Centre (SOC)

- NASA Ecocast (NDVI)
- GHG Europe (NHx)
- European Environment 
Agency  (CLC 1) 



Andrew et al. Continental-scale 
macro-fungal assemblage patterns 
correlate with climate, soil carbon 

and nitrogen deposition. Journal of 
Biogeography, accepted 23 Apr 2018.

Mean annual 
temperature: most 
important correlate of 
the first compositional 
gradient

for both saprotrophic
and ectomycorrhizal
fungi

Saprotrophic assemblies Ectomycorrhizal assemblies

(winter) temp. altitude longitude



Saprotrophic assemblies Ectomycorrhizal assemblies
Second gradient 
structuring 
assemblages differs:

Nitrogen deposition
highest correlate for 
saprotrophic fungi

Soil organic carbon
highest correlate for 
ectomycorrhizal fungi. 

nitrogen  continentality soil org. C  sum. temp.  latitude

Andrew et al. Continental-scale 
macro-fungal assemblage patterns 
correlate with climate, soil carbon 

and nitrogen deposition. Journal of 
Biogeography, accepted 23 Apr 2018.



suggests targeting
higher latitudes and 
altitudes for a better 

understanding of 
fungal dynamics, 

especially related to 
climate change. 

Compositional 
change by time 

(1970-1990 vs. 1991-2010)

Andrew et al. Continental-scale 
macro-fungal assemblage patterns 
correlate with climate, soil carbon 

and nitrogen deposition. Journal of 
Biogeography, accepted 23 Apr 2018.

Saprotrophic assemblies Ectomycorrhizal assemblies



Describing actual global change consequences via 
digital data can be a challenge



The biological (records) data, temporally-speaking, are either
- static (a single time period) 

- funding/sampling/processing logistics prevent collecting further data
- cannot readily fix this issue; projections or temporal-based 
interpolations/transference are possible go-arounds

- dynamic (available at multiple time periods; ideally daily to annually)
- likely spatiotemporally patchily distributed, especially at large spatial scales
- can aggregate for some measures (e.g., total counts; eg. 15 year intervals)
- sampling biases might require aggregation 

to one to or a few time periods (time 1 vs. 
time 2) (e.g., richness; species-specific 
responses)

- i.e., the ClimFun fungal records

Challenges to 
putting the  change
in global change 
research



The explanatory, environmental data, likewise,
- are often temporally static

- infer correlational impacts due to temporal changes (from past to present); don’t 
use explanatory data in this case

- utilize static covariates, comprising a gradient across the spatial range of the 
data, to demonstrate likely future impacts based on differences along the 
gradients (climate, land-use/vegetation type)

- analyse projected, modelled covariates (for future conditions)

Challenges to 
putting the  change
in global change 
research

Andrew et al. 2018. 
Congruency in fungal 
phenology patterns across 
dataset sources and scales. 
Fun. Ecol., 32: 9-17

static env. correlations

temporal trends



The explanatory, environmental data
- can be dynamic (available at multiple time periods)

- if the wrong time period and cannot parse data to match, may have to aggregate 
to a static measure, but perhaps still more accurate than a single time-point

how to connect the data?
- most ideal, but least likely: analyse temporally-based change in both the biological 

and environmental data

Challenges to 
putting the  change
in global change 
research



The explanatory, environmental data
- can be dynamic (available at multiple time periods)

- if the wrong time period and cannot parse data to match, may have to aggregate 
to a static measure, but perhaps still more accurate than a single time-point

how to connect the data?
- most ideal, but least likely: analyse temporally-based change in both the biological 

and environmental data

- but if need to aggregate the biological data, link up the records first to the 
dynamic, temporally variable environmental data to better address global
change questions. 

Challenges to 
putting the  change
in global change 
research

EOBS daily temperature 
data linked up to date of 
fruit body collection



The explanatory, environmental data
- can be dynamic (available at multiple time periods)

- if the wrong time period and cannot parse data to match, may have to aggregate 
to a static measure, but perhaps still more accurate than a single time-point

how to connect the data?
- most ideal, but least likely: analyse temporally-based change in both the biological 

and environmental data

- but if need to aggregate the biological data, link up the records first to the 
dynamic, temporally variable environmental data to better address global
change questions. 

- compare the predictive power of static versus dynamic covariates, and what 
they biologically mean

Challenges to 
putting the  change
in global change 
research

EOBS daily temperature 
data linked up to date of 
fruit body collection



Working around the
challenges to 
putting the  change
in global change 
research

Example 2: static + dynamic covariates to explain fungal 
diversity patterns – in a global change context



Example 2: static + dynamic covariates to explain fungal 
diversity patterns – in a global change context

Add temporally dynamic environmental covariates (as available)
… may better demonstrate how fungal richness patterns are 
impacted by changes in:

a) climate
b) land-use / land-cover / urbanization
c) pollution amounts (NHx, NOy)

…also bring in tree species observational data, given the 
connection between them and fungi

impacts of the shorter-
versus longer-term 
environment to the 

responsiveness of fungi



Example 2: static + dynamic covariates to explain fungal 
diversity patterns – in a global change context

(scaled values)

(for saprotrophic fungi) (for ectomycorrhizal fungi)
Collection day temp. Mean annual temp. Static landcover Annual land-cover

range: -5 to 3range: -2 to 6



Andrew et al. Temporally static and 
dynamic environmental predictors 
demonstrate sensitivity of fungal 
phenology diversity to climate, 
pollution and urbanization. 
Appl. Plant Sci., special issue, 
‘Emerging Frontiers in Plant 

Phenology.’ In prep.

ectomycorrhizal saprotrophic saprotrophic: ectomycorrhizal Fungal richness patterns, 
on the same colour scale, 
for ectomycorrhizal and 
saprotrophic fungi, as 
well as the ratio of 
saprotrophic to 
ectomycorrhizal fungal 
species



Temperature affects fungal richness:

Saprotrophic Ectomycorrhizal

Andrew et al. Temporally static and 
dynamic environmental predictors 
demonstrate sensitivity of fungal 
phenology diversity to climate, 
pollution and urbanization. 
Appl. Plant Sci., special issue, 
‘Emerging Frontiers in Plant 

Phenology.’ In prep.

easting * northing < 2e-16 ***

Altitude            0.006674 ** 

NHx (annual max) 0.037692 *  

Temp. (mean daily)  0.000962 ***

R-sq.(adj) =  0.581

~ Mean daily temp.
(scaled variables)

easting * northing 1.16e-09 ***

altitude             0.013942 * 

Temp. (warmest month) 7.92e-05 ***

Temp. (annual range) 0.013385 *

NHx (annual max) 0.000565 ***  

R-sq.(adj) =  0.403

Richness ~ Warmest month temp.
(scaled variables) Richness ~ Annual temp. range

(scaled variables)

** Preliminary results; subject to 
change with model finalization; 
but the point holds that static and 
dynamic temporal variables 
provide unique information that 
are helpful to understand 
sensitivities of organisms to 
climate, pollution and land-use 
change

overall temp. related to 
seasonality important

daily temp. important; 
greater  climatic sensitivity?



Impact of atmospheric pollution to fungal richness:

diversity decline
Saprotrophic Ectomycorrhizal

Andrew et al. Temporally static and 
dynamic environmental predictors 
demonstrate sensitivity of fungal 
phenology diversity to climate, 
pollution and urbanization. 
Appl. Plant Sci., special issue, 
‘Emerging Frontiers in Plant 

Phenology.’ In prep.

easting * northing < 2e-16 ***

Altitude            0.006674 ** 

NHx (annual max) 0.037692 *  

Temp. (mean daily)  0.000962 ***

R-sq.(adj) =  0.581

Richness ~ NHx
(scaled variables)

easting * northing 1.16e-09 ***

altitude             0.013942 * 

Temp. (warmest month) 7.92e-05 ***

Temp. (annual range) 0.013385 *

NHx (annual max) 0.000565 ***  

R-sq.(adj) =  0.403

Richness ~ NHx
(scaled variables)

** Preliminary results; subject to 
change with model finalization; 
but the point holds that static and 
dynamic temporal variables 
provide unique information that 
are helpful to understand 
sensitivities of organisms to 
climate, pollution and land-use 
change



Andrew et al. Temporally static and 
dynamic environmental predictors 
demonstrate sensitivity of fungal 
phenology diversity to climate, 
pollution and urbanization. 
Appl. Plant Sci., special issue, 
‘Emerging Frontiers in Plant 

Phenology.’ In prep.

Richness for 
ectomycorrhizal (Ec) and 
saprotrophic (Sa) fungi is 
statistically different (p < 
2.2e-16 ) by land-type

Lowest mean diversity in 
urban areas

Highest mean diversity in 
forests (temperate 
evergreen needleleaf 
forests)



In conclusion
Some patterns are similar across functional groups, e.g., the correlation of 
annual temperature and the primary gradient structuring fungal 
assemblages; a decline in richness with increased nitrogen deposition 

Other patterns deviate, for example, fungal richness for saprotrophic and 
ectomycorrhizal fungi correlating with temperature at differing temporal 
scales. 

In terms of temporal linkages between climate change and fungi, our results 
suggest targeting higher latitudes and altitudes for greater impacts. 

Given the patterns presented here, we demonstrate the power of multi-
source observational records data to advance knowledge in global change 
biology, and through connection with a variety of available meta-data at 
both static and dynamic temporal scales.
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