PCC

The Pteridological Collections Consortium

at are pte

Robbin Moran

Wes Testo

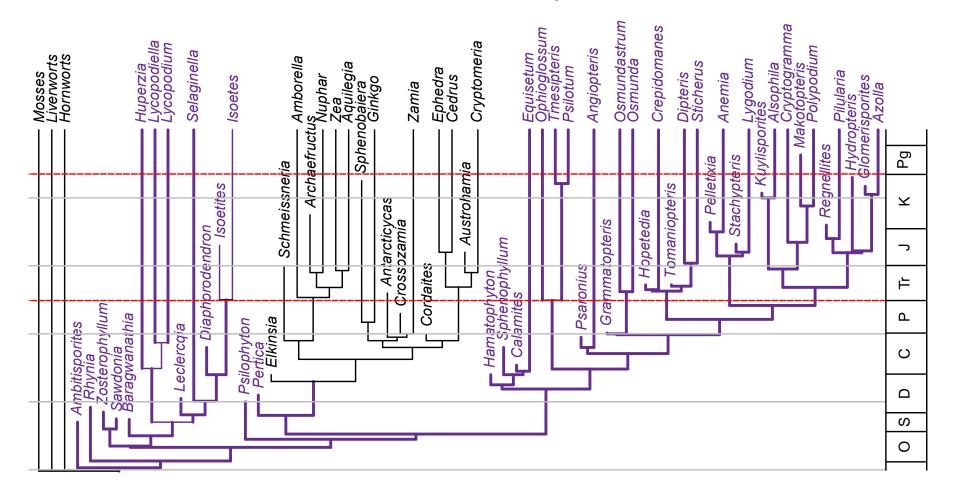
Robbin Moran

Carl Rothfels

Steve Matson


John Game Robbin Moran

Robbin Moran


Barry Rice

Carl Rothfels

The Google

Pteridophytes

Project Goals

- 1. Establish a Pteridological Collections Consortium (PCC)
 - Integrate the communities

Project Goals

- 1. Establish a Pteridological Collections Consortium (PCC)
 - Integrate the communities
- 2. Digitize 1,766,671 pteridophyte specimens
 - 100,193 fossil specimen
 - 1,666,478 herbarium specimens

Project Goals

- 1. Establish a Pteridological Collections Consortium (PCC)
 - Integrate the communities
- 2. Digitize 1,766,671 pteridophyte specimens
 - 100,193 fossil specimen
 - 1,666,478 herbarium specimens
- 3. Provide a digital portal and community focal point
 - Dissemination, visualization, and analysis of pteridophyte specimen images and data, fossil and extant

36 PCC Members (and counting)

Nine core institutions, 20 sub-awards, seven contributors

University of California, Berkeley

Oregon State University University of Washington Bishop Museum *University of California, Davis *University of Hawai'i *National Museum of Natural History

New York Botanical Garden

Rutgers University University of Texas, Austin

University of Michigan

University of Minnesota Miami University, Ohio *Ohio University

Field Museum

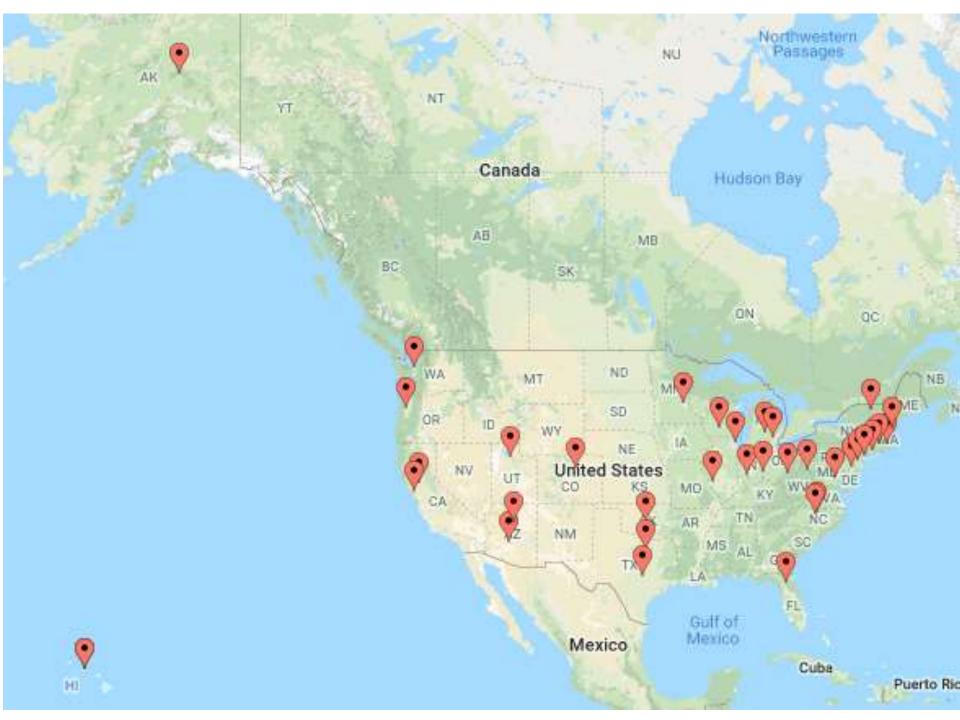
University of Wisconsin Michigan State University

Missouri Botanical Garden

Yale University

University of Alaska Botanical Research Institute of Texas University of Oklahoma *University of Connecticut

University of Vermont


University of New Hampshire Drexel University *Indiana University

University of Florida

Museum of Northern Arizona Denver Museum of Natural History Brown University

University of North Carolina

Duke University Natural History Museum of Utah Arizona State University *University of West Virginia

Symbiota portal:

- pteridoPortal.org (coming soon)

- Symbiota portal: – pteridoPortal.org (coming soon)
- Project site:
 - pteridophytes.berkeley.edu (coming soon)

- Symbiota portal:
 - pteridoPortal.org (coming soon)
- Project site:
 - pteridophytes.berkeley.edu (coming soon)
- Development of Paleo Symbiota Module
 - Add DwC GeologicalContext metadata
 - Allow for simultaneous search of extant and fossil collections

- Symbiota portal:
 - pteridoPortal.org (coming soon)
- Project site:
 - pteridophytes.berkeley.edu (coming soon)
- Development of Paleo Symbiota Module
 - Add DwC GeologicalContext metadata
 - Allow for simultaneous search of extant and fossil collections
- Social media
 - Twitter; Facebook

Pteridophyte Collections Consortium TCN

@pterido_TCN

We are the Pteridophyte Collections Consortium TCN. We are digitizing extant and fossil pteridophyte specimens from 36 herbaria and museums nationwide.

III Joined September 2018

New to Twitter?

Sign up now to get your own personalized timeline!

Sign up

Tweets Tweets & replies

17

Q

Pteridophyte Collections Consortium TCN @pterido_TCN · 23h For all you pteridophiles the Pteridophyte Collections Consortium TCN is now in the Twiittersphere! #ourfirstTweet #allfernsdeadandalive

O

Outreach and Education

- Online interactive program geared toward middle school learners
- Online lesson plan and YouTube videos: The rise and evolution of spore plants
- Collaboration with GoFlag to incorporate PCC data into the Plant Phylogeny Voyager

• Pteridophytes have an intimate connection to abiotic conditions; responses to global change

- Pteridophytes have an intimate connection to abiotic conditions; responses to global change
- Similarly, what factors influence the diversification and geographic distribution of lineages through time?

- Pteridophytes have an intimate connection to abiotic conditions; responses to global change
- Similarly, what factors influence the diversification and geographic distribution of lineages through time?
- How have major macro-ecological features evolved over geological time?

- Pteridophytes have an intimate connection to abiotic conditions; responses to global change
- Similarly, what factors influence the diversification and geographic distribution of lineages through time?
- How have major macro-ecological features evolved over geological time?
- What are the patterns of whole-genome duplication over geological time, and what are the evolutionary consequences of those duplications?

- Pteridophytes have an intimate connection to abiotic conditions; responses to global change
- Similarly, what factors influence the diversification and geographic distribution of lineages through time?
- How have major macro-ecological features evolved over geological time?
- What are the patterns of whole-genome duplication over geological time, and what are the evolutionary consequences of those duplications?
- How can fossils inform our reconstruction of the tree of life?

Contact us: pteridophytes@berkeley.edu

Thank you NSF