Regular Expression-Based Parsing of Tesseract Output from Lichen Herbarium Labels
Robert Anglin

Presented at the iDigBio OCR/NLP Hackathon, February 13 and 14, 2013 at Fort Worth, Texas.

The Lichens, Bryophytes and Climate Change (LBCC) project endeavors to digitize the label information from millions of North American lichen and bryophyte herbarium specimens. These labels are occasionally hand written although usually at least partially typed or printed. When typed or printed a myriad of fonts have been used. Thus far, we have been constrained to use open-source Optical Character Recognition (OCR) software. By most accounts the best of these is Tesseract. While it does not recognize handwriting it is considered to be the best at recognizing typewritten text images.
Our workflow involves attaching a barcode to labels, imaging them, assigning the barcode to be the image filename and submitting the images to an FTP server to be entered into Symbiota, a MySQL database designed by Ed Gilbert, with the barcode as the catalog number. Once entered into Symbiota, the images are batch processed with Tesseract and the results entered into the database as well. The next step is to parse the Tesseract output to retrieve the label information in hopes of being able to populate relevant fields in the database. I have been developing code using PHP version 5.3 and its PCRE regular-expression library for this purpose.
Fixing Tesseract Output
Tesseract output often contains characteristic errors. For instance, the character sequences “VV”, “\/\/” and “\X/” are often generated in place of “W”. As “W” is an important part of latitude strings and these character sequences are almost never encountered in actual labels these character sequences and others like them can be globally replaced to facilitate parsing. Other characteristic Tesseract errors involve replacing “S” with “5”, “0” with “O”, “1” with “I”, etc., and visa-versa. These cannot be globally replaced without generating errors. They can, however, be replaced with confidence in the proper context.
The string “0ct I3, 19S2”, for instance, is so unlikely to be legitimate label content that it can be converted to “Oct 13, 1952” without being overly concerned about generating errors. The same goes for “IZO° 44’ N, 56° 78’ W”. It can be replaced with “120° 44’ N, 56° 78’ W” with confidence. Caution is called for when dealing with other output. When barcodes are in the label image the Tesseract output can include traces that it would be best to eliminate. These are not errors but artifacts. Barcode traces often consist of strings of 1s and ls and Is and other predominantly vertical characters. However, it is possible to take this too far. If you eliminate all strings of Is and ls and 1s 4 or more characters long you would eliminate the first four characters of “Illinois”, for instance. “H” is a mostly vertical character that often occurs in barcode traces as do spaces. Include in these your regular expression and you eliminate all but the first two characters in “Tall Hill” if you specify target strings 7 or more characters long.
With other characteristic errors only a subset can be fixed. Tesseract will occasionally replace a degree sign with a “0” or “o” resulting in a string like “12045’ N, 45° 24’W”. Some of these can be recognized and fixed and some can’t without the risk of introducing errors.
Parsing Strategy
After fixing the output as described above, the parsing begins with recovery of labeled Darwin Core elements. Locality, substrate, habitat, collectors and counties are identified on some labels as such. These can be retrieved with regular expressions although it can be difficult to programmatically identify where the end of the content is. Often the best way to proceed with this is to try to find another Darwin Core element. Thus on many labels – notably those from the New York Botanical Garden – the county is followed by the locality which is followed by the coordinates which are followed by the elevation and the habitat. The county is often labeled and thus provides an anchor for the regular-expression parser which can search for other Darwin Core elements in relation to it. Other potential anchors include headers such as “LICHENS OF” which will be followed by a political entity, often the state.
Results So Far

The FScore for the submitted results is 0.647 for the gold standard and 0.347 for the silver. A much lower score for the silver standard is to be expected due to the content-driven rather than position-driven nature of the parsing strategy. Considering that the results of the parsing are intended to be submitted to the database, a lower score is encouraging since it implies a lower level of erroneous submissions.
The highest recoveries are for highly formatted fields like Lat/Longs. Dates would be expected to be among the best recoveries but my code reformats dates to the yyyy-mm-dd format for entry into the database and it would require a major code rewrite to maintain the original formatting. The worst results were for fields that there is no code to recover as these fields are not a high priority for the LBCC project. These include institution and dataset name. The notes fields, i.e., identification remarks, occurrence remarks and field notes are also not recovered by my code as these are not high priority and are difficult to identify programmatically. There is also no code to identify genus or specific epithet as these are assumed to be extracted from the scientific name on data entry. In the LBCC project we are encouraging submitters to provide a scientific name so until I started concentrating on the hackathon I had not devoted any code to retrieving it.
The results submitted are a snapshot in time of a work in progress. Due to the ad hoc nature of the development process the code will have to be continually revised to reflect new labels formats encountered.

