Enabling the TCNs and Collaborators Breakout Group #3: Specimen Imaging & Post-Processing

Facilitator Name: Lucinda McDade

Scribe Name: Jill Holliday

Time Allotted: 150 minutes

Group Participant List: Barbara Thiers, Christopher Dietrich, Melissa Tulig, Christine Johnson, Greg

Riccardi, Gil Nelson, Kevin Love, Betty Dunckel

Objectives:

Discuss and produce a report to summarize specimen imaging within the ADBC community. Focus on opportunities to leverage existing tools/systems, standards, practices and techniques. Nominate a reporter to deliver a 15-minute summary report to the plenary session at the conclusion of your session.

Deliverables:

1. Define and order <u>at least five</u> critical challenges faced by the TCNs related to specimen imaging and post-processing (#1 is the most critical challenge).

Rank Order	Challenges Related to Specimen Imaging and Post-Processing
1	Quality Ccontrol Issues: equipment calibration, hardware, color bars, scales, consistency; training of staff
2	Standards & Best practices: standardization (type of camera, quality of image), recommendations, would be nice to establish a clearing house to pool and share experiences and recommendations (esp problematic for challenging specimens - e.g., microscopic)
3	File transfer (esp. large files); institutions where important collections are housed have differing capacities (small institutions may have real problems here)
4	Basic decisions about what to image, how to prep and stage the materials for imaging
5	file management: naming, organization, Need for standards
Other	dealing with composite/aggregate images and how to separate out distinct images from larger whole (including labels)
Other	archiving / backing up / safe-guarding original image files
Other	maximize image quality and utility while keeping costs low

Other	follow guidelines established at project outset/protocols (recommendations on pixels/lenses/cameras)
Other	image presentation for on-line serving / tools to use, etc.
Other	very small specimens - microscopic preparations (what quality, what purpose?) many analog images that need to be converted (metadata capture) TIME necessary for scanning and other approaches

2. Identify and order <u>up to five</u> existing practices and techniques that can be leveraged for specimen imaging and post-processing (#1 is the most preferred practice/technique). If more than five, focus on the five that are currently the most viable, commonplace, and applicable to the needs of the TCNs and collaborators, while keeping a list of all references to existing practices.

PREAMBLE: The materials that we seek to capture images of are exceedingly heterogeneous and solutions will be nature-of-specimen dependent and extremely variable

Rank Order	Specimen Imaging and Post-Processing Practices and Techniques		
Others (non- prioritized list)	**Collaboration to share info/experiences regarding best practices via innovative methods: blogging, webinars, video library of methods **Training workshops (including take advantage of assembly venues like SPNHC) **Take full advantage of local experts (photographers, mathematicians, IT, computer science expertise) to MUTUAL benefit (interactions and collaborations)		

3. Identify and order <u>up to five</u> existing standards that can be leveraged for specimen imaging and post-processing. If more than five, focus on the five that are currently the most viable, commonplace, and applicable to the needs of the TCNs and collaborators. Explain the choices.

PREAMBLE:

- 1. What are the standards? Standards will vary depending on subject being imaged and purpose of image (display vs. archive) but there should be a minimum standard (e.g. dpi) to yield images that are research-usable, also vital to store / manage original metadata
- 2. Balance among: Objectives to be achieved in imaging (use), cost, and quality achievable (limits to technology) highest resolution achievable for affordable price::
- 3. Clearing house would help:

VISION: HUB COULD / SHOULD be this clearng house

Rank Order	Specimen Imaging/Processing Standards	Explanation of Selections
1	Morphbank Audobon Core is a developing standard	Take advantage of their accumulated experience / wisdom
2	Image format standards: xmp exif jpg 2000 dng MUST archive raw images	Adobe converters produce standardized raw format without losing any data/archive raw data
3	NEED to implement standards for: File naming and management	simple standards for file naming; the important part is the metadata but a clear/specific name helps.
4	www.archives.gov	archives.gov has standards already set up

4. Identify and order <u>up to five</u> existing tools/systems that can be leveraged for specimen imaging and post-processing (#1 is the most preferred tool/system). If more than five are proposed, focus on the five that are currently the most viable and beneficial to the greatest number of stakeholders. Explain the choices. Link tools/systems to the practices/techniques (identified in Deliverable #2) and standards (identified in Deliverable #3) that each enables or supports.

PREAMBLE: Disclipine/specimen dependent - must yield research quality images

Rank Order	Specimen Imaging and Post- Processing Tools	Explanation of Selections	Linked Practices/ Techniques (Line Numbers)	Linked Standards (Line Numbers)
Other (non- prioritized)	open zoom	Tiled image processing and display standard with many implementations		
Other (non- prioritized)	GIMP	open source "Photoshop"		
Other (non- prioritized)	computed tomography (CT for 3-D)			
Other (non- prioritized)	lightfield image	uses light / retains more information		
For specimens w/depth of field issues	LEAF system - camera, super hi rez	Global Plants Initiative project		
1 For herbarium specimens:	e-box	light box system (MK direct); allows for standard imaging, standard positioning of all elements, can change out cameras Best for flat Herbarium specimens		
1 For Invert specimens	SAT-scan, to be replaced by more affordable option	used in Australia and in London (insect collections); camera mounted to a robotic arm, tilts, BEST FOR INSECTS (Invert net more affordable)		

Other (non- prioritized)	Gigapan	robotic arm that allows panorama shots / stitch images together to yield higher quality image overall	
For herb specimens (non- prioritized)	Herbscan	lifts specimen up to scanner	
1. For specimens w/depth of field issues	Automontage	stacking software (other options similar available for free). Best for LARGE specimens and depth of field, also very small specimens and long distance microscope lenses Free/open source options = Combine-Z or Image J	

5. Define specific gaps that exist within each of the identified tools/systems (e.g., functionality problems, scalability limitations, availability, licensing issues, cost, lack of standard usage, missing features).

Rank Order	Specimen Imaging and Post- Processing Tools (list 1-5 from table above)	Gaps, Issues and Opportunities for Improvement
1	Herbarium/plant specimens	depth = camera or other approaches/software; jarred/pickled specimens can be problematic
2	Microscopic specimens	specimens on microscope slides (very small specimens); no system for efficient capture
3		data capture from labels/need automated process
4	Training	understanding necessary tools and feasibility of workflow
5	Speed & Automation	

6. Identify the critical implementation date for HUB appliances that would enable/enhance specimen imaging and post-processing based upon TCN project plans. Explain why this date is critical.

Critical Implementation Date (Appliance)	Explanation
7/1/2012	

7. Produce documentation related to the development/implementation of a specimen imaging and post-processing appliance to serve the needs of the ADBC community.

Our vision = TCNs devise (a) discipline specific requirements to achieve research quality images, (b) software & hardware implementations, © protocols to be followed by other participants (this should two-way street with advice from HUB serving as clearing house / source of expert advice)

HUB "appliance-ize" all steps that follow image capture (including working to solve problems with file transfer from variously capacitated institutions) (again, two-way street / interaction with TCN participants)

HUB automates / ensure output to relevant data banks / archivers / servers: Morphbank, GBIF, EOL, etc. (two-way street)

HUB ensures data / image archiving / back-up, etc. (two-way street)

Functional Requirements:	
Estimated computational resource requirements (computation, storage, network capacity):	
Specific items the HUB needs to deliver to enable/enhance specimen imaging and post-processing:	
Specific items the TCNs needs to deliver to enable/enhance specimen imaging and post-processing:	Discipline appropriate standards to be achieved (minimal bar for research use) Protocols Images

Provide a risk assessment related to this specimen imaging and post-processing appliance. Likelihood of Occurrence: 1 = Highly Likely, 2 = Somewhat Likely, 3 = Not Likely

Impact of Occurrence: 1 = Significant Impact, 2 = Moderate Impact, 3 = Little/No Impact

!!!PREAMBLE: HUB must be perceived as facilitating rather than controlling!!!

Risk Name	Brief Description	Likelihood of Occurrence	Impact of Occurrence	Potential Mitigation Strategies
compliance	ppl might not understand protocols/protocols			ongoing support for contributors; make it a dynamic system Help desk Outreach
won't be adopted	people won't want to participate			steps to ensure adoption. Must be perceived as facilitating rather than controlling

8. Other notes, comments and details not captured elsewhere.

Nature of specimens and appropriate standards Protocols Taxon-specific requirements Images